Ссылки
Alchanatis, V., & Cohen, Y. (2011). Spectral and spatial methods for hyperspectral image analysis for estimation of biophysical and biochemical properties of agricultural crops. In P.S. Thenkabal, G.J. Lyon, & A. Huete (Eds.), Hyperspectral remote sensing of vegetation (pp. 239-308). Boca Raton, London, New York: CRC Press-Taylor and Francis Group.
Thenkabal, P.S., Lyon, G.J., & Huete, A. (2008). Hyperspectral remote sensing of vegetation canopy reflectance and biophysical sources of variability in canopy reflectance. Remote Sensing of Environment, 64, 234-253.
Beckmann, T., & McKinney, R. (2006). Hyperion level 1G (L1GST) product output files data format control book (DCFB). USGS Center for Earth Resource Observation and Science (EROS) (Volume: 1, Issue: April).
Berk, A., Anderson, G.P., Bernstein, L.S., Acharya, P.K., Dothe, H., Matthew, M.W., et al. (1999). MODTRAN4 radiative transfer modeling for atmospheric correction. SPIE proceedings III (pp. 3756).
Boyd, D.S., & Ripple, W.J. (1997). Potential vegetation indices for determining global forest cover. International Journal of Remote Sensing, 18, 395-1401.
Boyd, D.S., Wicks, T.E., & Curran, P. (1999). Use of middle infrared radiation to estimate the leaf area index of a boreal forest. Tree Physiology, 20, 755-760.
Blackburn, G.A., & Ferwerda, J.G. (2008). Retrieval of chlorophyll concentration from leaf reflectance using wavelet analysis. Remote Sensing of Environment, 112, 1614-1632.
Bretscher, O. (1995). Linear algebra with applications (3rd ed.). Upper Saddle River NJ: Prentice Hall.
Cai, X., Thenkabal, P.S., Biradar, C.M., Platonov, A., Gumma, M., Deeravath, V., et al. (2009). Water productivity mapping using remote sensing data of various resolutions to support "more crop per drop". Journal of Applied Remote Sensing, 3, 033557. http://dx.doi.org/10.1117/1.3256743.
Chan, J., Cheung-Wai, & Pailinkx, D. (2008). Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope map-ping using airborne hyperspectral imagery. Remote Sensing of Environment, 112, 2999-3011.
Chen, J., Wang, R., & Wang, C. (2008). A multi-resolution spectral angle-based hyperspectral classification method. International Journal of Remote Sensing, 29, 3593-3616.
Clever, J.G.W., van der Werf, A.M., Gumma, M., S., & Schipper, V. (2008). Estimating grassland biomass using SVM band shaving of hyperspectral data. Photogrammetric Engineering and Remote Sensing, 73(10), 1141-1148.
Colombo, R., Busetto, L., Meroni, M., Rossini, M., & Panigada, C. (2011). Optical remote sensing of vegetation water content. In P.S. Thenkabal, G.J. Lyon, & A. Huete (Eds.), Hyperspectral remote sensing of vegetation (pp. 227). Boca Raton, London, New York: CRC Press-Taylor and Francis Group.
Congalton, R., & Green, K. (2009). Assessing the accuracy of remotely sensed data: Principles and practices (2nd ed.). Boca Raton, FL: CRC/Taylor & Francis.
Galvão, L.S., Roberts, D.A., Formaggio, A.R., Numata, I., & Breuni, F.M. (2009). View angle effects on the discrimination of soybean varieties and on the relationships between vegetation indices and yield using off-nadir Hyperion data. Remote Sensing of Environment, 113, 846-856.
Geerken, R., Batikha, N., Celis, D., & De Pauw, E. (2005). Differentiation of rangeland vegetation and assessment of its status: Field investigations and MODIS and SPOT VEGETATION data analyses. International Journal of Remote Sensing, 26, 4499-4526. http://dx.doi.org/10.1080/01431160500213425.
Gitelson, A. (2011). Non-destructive estimation of foliar pigment (chlorophylls, carotenoids, and anthocyanins) contents: Evaluating a semi-analytical three-band model. In P.S. Thenkabal, G.J. Lyon, & A. Huete (Eds.), Hyperspectral remote sensing of vegetation (pp. 141-166). Boca Raton, London, New York: CRC Press-Taylor and Francis Group.
Gitelson, A.A., Gritz, Y., & Merzlyak, M.N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 160, 271-282. http://www.sciencedirect.com/science/article/pii/S017616704034.
Glahn, H.R. (1968). Canonical correlation and its relationship to discriminant analysis and multiple regression. Journal of the Atmospheric Sciences, 25, 23-31.
Goveren, M., Dye, P.J., Weiersbye, I.M., Witkowski, E.T.F., & Ahmed, F. (2009). Review of commonly used remote sensing and ground-based technologies to measure plant water stress. WaterSA, 35, 741-752.
Hill, M. J. (2004). Grazing agriculture: managed pasture, grassland, and rangeland. In S. L. Ustin (Ed.), Manual of remote sensing. Remote sensing for natural resource management and environmental monitoring. Vol. 4. (pp. 449–530). Hoboken, NJ: John Wiley & Sons.
Hocking, R. R. (1976). The analysis and selection of variables in linear regression. Biometrics, 3, 1–49.
Houborg, R., & Boegh, E. (2008). Mapping leaf chlorophyll and leaf area index using inverse and forward canopy reflectance modeling and SPOT reflectance data. Remote Sensing of Environment, 112, 186–202.
Jolliffe, I. T., & Howarth, P. J. (2008). Mapping an inland wetland complex using hyperspectral imagery. International Journal of Remote Sensing, 29, 3609–3631.
Kalacska, M., & Sanchez-Azofeifa, G. A. (2008). Hyperspectral remote sensing of tropical and subtropical forests. Boca Raton, London, New York: CRC Press, Taylor and Francis Group, 352.
Lee, K. S., Cohen, W. B., Kennedy, R. E., Mairer, T. K., & Gower, S. T. (2004). Hyperspectral versus multispectral data for estimating leaf area index in four different biomes. Remote Sensing of Environment, 91, 508–520.
Moran, M. S., Inoue, Y. E., & Barnes, M. (1997). Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sensing of Environment, 19–346 (URL: http://www.sciencedirect.com/science/article/pii/S0034425797000342).
National Aeronautics and Space Administration (2013). Hyperspectral mission study. California Institute of Technology. Available online at: http://hyperspi.jpl.nasa.gov/missionstudy.
Ollinger, S. V. (2011). Sources of variability in canopy reflectance and the convergent properties of plants. The New Phytologist, 189, 375–394.
Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 2(11), 559–572.
Pilla, K. C. S. (1955). Some new test criteria in multivariate analysis. Annals of Mathematical Statistics, 117–121 (26 pp.).
Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring vegetation systems in the Great Plains with ERTS. Third ERTS Symposium, NASA SP-351, I, 309–317.
SAS Institute Inc. (2013). SAS/STAT user's guide and software release, version 9.2. Cary, NC: SAS Institute Inc.
Schaepman, M. E., Ustin, S. L., Plaza, A. J., Painter, T. H., Verrelst, J., & Liang, S. (2009). Earth system science related imaging spectroscopy—An assessment. Remote Sensing of Environment, 113, 123–137.
Thenkabail, P. S., Biradar, C. M., Noojipady, P., & Enclona, E. A. (2003). Biophysical and yield information for precision farming from near-real time and historical Landsat TM images. International Journal of Remote Sensing, 24, 2879–2904.
Thenkabail, P. S., Enclona, E. A., Ashton, M. S., Legg, C., & Jean De Dieu, M. (2004). Hyperion, IKONOS, ALI, and ETM+ sensors in the study of African rainforests. Remote Sensing of Environment, 90, 23–43.
Thenkabail, P. S., Enclona, E. A., Ashton, M. S., & Van Der Meer, V. (2004). Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications. Remote Sensing of Environment, 91, 354–376.
Thenkabail, P. S., Knox, J. W., Ozdogan, M., Gupta, M. K., Congalton, R., Wu, Z., You, S., Milesi, C., Finckr, A., Marshall, M., Mariotto, I., Giri, C., & Nagler, P. (2012). Assessing future risks to agricultural productivity, water resources and food security: how can remote sensing help? Photogrammetric Engineering & Remote Sensing (PE&RS) special issue.
Thenkabail, P. S., Lyon, G. J., & Huete, A. (2011). Advances in hyperspectral remote sensing of vegetation and agricultural crops. In P. S. Thenkabail, G. J. Lyon, & A. Huete (Eds.), Hyperspectral remote sensing of vegetation (pp. 3–29). Boca Raton, London, New York: CRC Press—Taylor and Francis Group.
Thenkabail, P. S., Smith, R. B., & De-Pauw, E. (2000). Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment, 71, 158–182.
Thenkabail, P. S., Smith, R. B., & De-Pauw, E. (2002). Evaluation of narrowband and broadband vegetation indices for determining optimal hyperspectral wavebands for agricultural crop characterization. Photogrammetric Engineering and Remote Sensing, 68, 607–621.
Varsney, P. K., & Araora, M. K. (2004). Advanced image processing techniques for remotely sensed hyperspectral data. Berlin, Germany: Springer.
Wilk, S. S. (1935). On the independence of k sets of normally distributed statistical variables. Econometrica, 3, 309–326.