Список литературы
1. Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019, 3, 430–439. [CrossRef] [PubMed]
2. Fisher, M.C.; Henk, D.A.; Briggs, C.J.; Brownstein, J.S.; Madoff, L.C.; McCraw, S.L.; Gurr, S.J. Emerging fungal threats to animal, plant and ecosystem health. Nature 2012, 484, 186–194. [CrossRef] [PubMed]
3. Boyd, L.A.; Ridout, C.; O’Sullivan, D.M.; Leach, J.E.; Leung, H. Plant–pathogen interactions: Disease resistance in modern agriculture. Trends. Genet. 2013, 29, 233–240. [CrossRef]
4. Peralta, A.L.; Sun, Y.; McDaniel, M.D.; Lennon, J.T. Crop rotational diversity increases disease suppressive capacity of soil microbiomes. Ecosphere 2018, 9, e02235. [CrossRef]
5. Ristaino, J.B.; Anderson, P.K.; Bebber, D.P.; Brauman, K.A.; Wei, Q. The persistent threat of emerging plant disease pandemics to global food security. Proc. Natl. Acad. Sci. USA 2021, 118, e2022239118. [CrossRef]
6. Dan, E.; Ho, T.; Rwahnih, M.A.; Martin, R.R.; Tzanetakis, I. High throughput sequencing for plant virus detection and discovery. Phytopathology 2019, 109, 716–725.
7. Ma, Z.; Luo, Y.; Michailides, T.J. Nested pcr assays for detection of monilinia fructicola in stone fruit orchards and botryosphaeria dothidea from pistachios in california. J. Phytopathol. 2010, 151, 312–322. [CrossRef]
8. Singh, V.; Sharma, N.; Singh, S. A review of imaging techniques for plant disease detection. Artif. Intell. Agric. 2020, 4, 229–242. [CrossRef]
9. Zhu, W.; Chen, H.; Ciechanowska, I.; Spaner, D. Application of infrared thermal imaging for the rapid diagnosis of crop disease. IFAC-PapersOnLine 2018, 51, 424–430. [CrossRef]
10. Cen, H.; Weng, H.; Yao, J.; He, M.; Lv, J.; Hua, S.; Li, H.; He, Y. Chlorophyll fluorescence imaging uncovers photosynthetic fingerprint of citrus Huanglongbing. Front. Plant Sci. 2017, 8, 1509. [CrossRef]
11. Mahlein, A.K.; Kuska, M.T.; Behmann, J.; Polder, G.; Walter, A. Hyperspectral sensors and imaging technologies in phytopathology: State of the art. Annu. Rev. Phytopathol. 2018, 56, 535–558. [CrossRef] [PubMed]
12. Zhang, J.; Huang, Y.; Pu, R.; Gonzalez-Moreno, P.; Yuan, L.; Wu, K.; Huang, W. Monitoring plant diseases and pests through remote sensing technology: A review. Comput. Electron. Agric. 2019, 165, 104943. [CrossRef]
13. Zaneti, R.N.; Girardi, V.; Spilki, F.R.; Mena, K.; Etchepare, R. Quantitative microbial risk assessment of Sars-CoV-2 for workers in wastewater treatment plants. Sci. Total Environ. 2020, 754, 142163. [CrossRef]
14. Zhang, J.; Wang, B.; Zhang, X.; Liu, P.; Huang, W. Impact of spectral interval on wavelet features for detecting wheat yellow rust with hyperspectral data. Int. J. Agr. Biolog. Eng. 2018, 11, 138–144. [CrossRef]
15. Zhang, J.; Yang, Y.; Feng, X.; Xu, H.; He, Y. Identification of bacterial blight resistant rice seeds using terahertz imaging and hyperspectral imaging combined with convolutional neural network. Front. Plant Sci. 2020, 11, 821. [CrossRef] [PubMed]
16. Jia, L.; Wang, L.; Yang, F.; Yang, L. Spring corn leaf blight monitoring based on hyperspectral derivative index. Chin. Agric. Sci. Bull. 2019, 35, 143–150.
17. Lu, J.; Zhou, M.; Gao, Y.; Jiang, H. Using hyperspectral imaging to discriminate yellow leaf curl disease in tomato leaves. Precis. Agric. 2018, 19, 379–394. [CrossRef]
18. Nouri, M.; Gorretta, N.; Vaysse, P.; Giraud, M.; Keresztes, B.; Roger, J.M. Near infrared hyperspectral dataset of healthy and infected apple tree leaves images for the early detection of apple scab disease. Data Brief 2018, 16, 967–971. [CrossRef]
19. Sandasi, M.; Vermaak, I.; Chen, W.; Viljoen, A. Skullcap and germander: Preventing potential toxicity through the application of hyperspectral imaging and multivariate image analysis as a novel quality control method. Planta Med. 2014, 80, 1329–1339. [CrossRef]
20. Zhu, H.; Chu, B.; Zhang, C.; Liu, F.; Jiang, L.; He, Y. Hyperspectral imaging for presymptomatic detection of tobacco disease with successive projections algorithm and machine-learning classifiers. Sci. Rep. 2017, 7, 4125. [CrossRef]
21. Hovmller, M.S.; Walter, S.; Bayles, R.A.; Hubbard, A.; Flath, K.; Sommerfeldt, N.; Leconte, M.; Czembor, P.; Rodriguez-Algaba, J.; Thach, T. Replacement of the European wheat yellow rust population by new races from the centre of diversity in the near-himalayan region. Plant Pathol. 2016, 65, 402–411. [CrossRef]
22. Huang, L.; Zhang, H.; Chao, R.; Huang, W.; Hu, T.; Zhao, J. Detection of scab in wheat ears using in situ hyperspectral data and support vector machine optimized by genetic algorithm. Int. J. Agr. Biol. Eng. 2020, 13, 7. [CrossRef]
23. Shi, Y.; Huang, W.; Zhou, X. Evaluation of wavelet spectral features in pathological detection and discrimination of yellow rust and powdery mildew in winter wheat with hyperspectral reflectance data. J. Appl. Remote Sens. 2017, 11, 026025. [CrossRef]
24. Mahlein, A.K.; Alisaac, E.; Masri, A.A.; Behmann, J.; Oerke, E.C. Comparison and combination of thermal, fluorescence, and hyperspectral imaging for monitoring fusarium head blight of wheat on spikelet scale. Sensors 2019, 19, 2281. [CrossRef]
25. Leucker, M.; Wahabzada, M.; Kersting, K.; Peter, M.; Beyer, W.; Steiner, U.; Mahlein, A.K.; Oerke, E.C. Hyperspectral imaging reveals the effect of sugar beet quantitative trait loci on cercospora leaf spot resistance. Funct. Plant Bio. 2016, 44, 1. [CrossRef] [PubMed]
26. Huang, S.; Qi, L.; Xue, K.; Wang, W.; Zhu, X. Hyperspectral image analysis based on bosw model for rice panicle blast grading. Comput. Electron. Agric. 2015, 118, 167–178. [CrossRef]
27. Shuaibu, M.; Lee, W.S.; Schueller, J.; Gader, P.; Hong, Y.; Kim, S. Unsupervised hyperspectral band selection for apple marssonina blotch detection. Comput. Electron. Agric. 2018, 12, 28. [CrossRef]
28. Ruszczak, B.; Smykaa, K. The detection of alternaria solani infection on tomatoes using ensemble learning. J. Amb. Intel. Smart Environ. 2020, 12, 407–418. [CrossRef]
29. Liang, K.; Huang, J.; He, R.; Wang, Q.; Chai, Y.; Shen, M. Comparison of Vis-NIR and SWIR hyperspectral imaging for the non-destructive detection of DON levels in Fusarium head blight wheat kernels and wheat flour. Infrared Phys. Techn. 2020, 106, 103281. [CrossRef]
30. Sun, Y.; Wang, K.; Liu, Q.; Pan, L.; Tu, K. Classification and discrimination of different fungal diseases of three infection levels on peaches using hyperspectral reflectance imaging analysis. Sensors 2018, 18, 1295. [CrossRef]
31. Wang, C.; Liu, B.; Liu, L.; Zhu, Y.; Li, X. A review of deep learning used in the hyperspectral image analysis for agriculture. Artif. Intell. Rev. 2021, 54, 5205–5253. [CrossRef]
32. Xing, H.; Feng, H.; Fu, J.; Xu, X.; Yang, G. Development and Application of Hyperspectral Remote Sensing; Springer: Berlin, Germany, 2017; Volume 546, pp. 271–282.
33. Telmo, A.O.; Joná, H.; Luís, P.; José, B.; Emanuel, P.; Raul, M.; Joaquim, S. Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens. 2017, 9, 1110.
34. Thomas, S.; Kuska, M.T.; Bohnenkamp, D.; Brugger, A.; Alisaac, E.; Wahabzada, M.; Behmann, J.; Mahlein, A.K. Benefits of hyperspectral imaging for plant disease detection and plant protection: A technical perspective. J. Plant. Dis. Protect. 2018, 125, 5–20. [CrossRef]
35. Gates, D.M.; Keegan, H.J.; Schleter, J.C. Sensorik für einen präzisierten Pflanzenschutz. Gesunde Pflanz. 2008, 60, 131–141.
36. Wang, L.; Jia, M.; Yin, D.; Tian, J. A review of remote sensing for mangrove forests: 1956–2018. Remote Sens. Environ. 2019, 231, 111223. [CrossRef]
37. Hennessy, A.; Clarke, K.; Lewis, M. Hyperspectral classification of plants: A review of waveband selection generalisability. Remote Sens. 2020, 12, 113. [CrossRef]
38. Olli, N.; Eija, H.; Sakari, T.; Niko, V.; Teemu, H.; Xiaowei, Y.; Juha, H.; Heikki, S.; Ilkka, P.L.N.; Nilton, I. Individual tree detection and classification with UAV-based photogrammetric point clouds and hyperspectral imaging. Remote Sens. 2017, 9, 185.
39. René, H.; Norbert, J.; André, G.; Jens, O. The effect of epidermal structures on leaf spectral signatures of ice plants (Aizoaceae). Remote Sens. 2015, 7, 16901.
40. Liu, Y.; Zhang, G.W.; Liu, D. Simultaneous measurement of chlorophyll and water content in navel orange leaves based on hyperspectral imaging. Spectroscopy 2014, 29, 40, 42–46.
41. Mutanga, O.; Van Aardt, J.; Kumar, L. Imaging spectroscopy (hyperspectral remote sensing) in Southern Africa: An overview. S. Afr. J. Sci. 2010, 105, 193–198. [CrossRef]
42. Wei, A.A.; Tian, L.; Chen, X.; Yu, Y. Retrieval and application of chlorophyll-a concentration in the Poyang Lake based on exhaustion method: A case study of Chinese Gaofen-5Satellitc AHSI data. J. Huazhong Normal Univ. 2020, 54, 447–453.
43. Qu, J.; Sun, D.; Cheng, J.; Pu, H. Mapping moisture contents in grass carp (ctenopharyngodon idella) slices under different freeze drying periods by vis-nir hyperspectral imaging. LWT-Food Sci. Technol. 2017, 75, 529–536. [CrossRef]
44. Oerke, E. Remote sensing of diseases. Annu. Rev. Phytopathol. 2020, 58, 225–252. [CrossRef] [PubMed]
45. Bonants, P.; Schoen, C.; Wolf, J.; Zijlstra, C. Developments in detection of plant pathogens and other plant-related organisms: Detection in the past towards detection in the future. Mededelingen 2001, 66, 25–37. [PubMed]
46. Pu, H.; Lin, L.; Sun, D. Principles of hyperspectral microscope imaging techniques and their applications in food quality and safety detection: A review. Compr. Rev. Food Sci. F. 2019, 18, 853–866. [CrossRef]
47. Gary, A.; Roth, S.; Tahiliani, N.M.; Neu-Baker, S.A. Hyperspectral microscopy as an analytical tool for nanomaterials. Wires. Nanomed. Nanobi. 2015, 7, 565–579.
48. Mahlein, A.K.; Rumpf, T.; Welke, P.; Dehne, H.W.; Plümer, L.; Steiner, U.; Oerke, E.C. Development of spectral indices for detecting and identifying plant diseases. Remote Sens. Environ. 2013, 128, 21–30. [CrossRef]
49. Mahlein, A.K.; Steiner, U.; Hillnhütter, C.; Dehne, H.W.; Oerke, E.C. Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases. Plant Methods 2012, 8, 3. [CrossRef]
50. Wahabzada, M.; Mahlein, A.K.; Bauckhage, C.; Steiner, U.; Oerke, E.C.; Kersting, K. Plant Phenotyping using Probabilistic Topic Models: Uncovering the Hyperspectral Language of Plants. Sci. Rep. 2016, 6, 22482. [CrossRef]
51. Behmann, J.; Mahlein, A.K.; Rumpf, T.; Romer, C.; Plumer, L. A review of advanced machine learning methods for the detection of biotic stress in precision crop protection. Precis. Agric. 2015, 16, 239–260. [CrossRef]
52. Lowe, A.; Harrison, N.; French, A.P. Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. Plant Methods 2017, 13, 80. [CrossRef] [PubMed]
53. Mahlein, A.K. Plant Disease Detection by Imaging Sensors-Parallels and Specific Demands for Precision Agriculture and Plant Phenotyping. Plant Dis. 2016, 100, 241–251. [CrossRef] [PubMed]
54. Fu, H.; Bian, L.; Cao, X.; Zhang, J. Hyperspectral imaging from a raw mosaic image with end-to-end learning. Opt. Express 2020, 28, 314–324. [CrossRef]
55. Liu, S.; Yang, G.; Zhou, H.; Jing, H.; Feng, H.; Xu, B.; Yang, H. Extraction of maize seedling number information based on UAV imagery. Trans. CSAE 2018, 34, 9.
56. Zhang, J.; Yang, C.; Zhao, B.; Song, H.; Hoffmann, W.C.; Shi, Y.; Zhang, D.; Zhang, G. Crop Classification and LAI Estimation Using Original and Resolution-Reduced Images from Two Consumer-Grade Cameras. Remote Sens. 2017, 9, 1054. [CrossRef]
57. Dai, J.; Zhang, G.; Guo, P.; Zeng, Y.; Cui, M.; Xue, J. Classification method of main crops in northern Xinjiang based on UAV visible waveband images. Trans. CSAE 2018, 34, 8.
58. He, Y.; Zhang, Y.; Li, J.; Wang, J. Estimation of stem biomass of individual Abies faxoniana through unmanned aerial vehicle remote sensing. J. Beijing For. Univ. 2016, 38, 8.
59. Nalepa, J.; Myller, M.; Kawulok, M. Transfer learning for segmenting dimensionally-reduced hyperspectral images. IEEE Geosci. Remote Sens. 2019, 17, 1228–1232. [CrossRef]
60. Cui, B.; Ma, X.; Xie, X.; Ren, G.; Ma, Y. Classification of visible and infrared hyperspectral images based on image segmentation and edge-preserving filtering. Infrared Phys. Techn. 2017, 81, 79–88. [CrossRef]
61. Ishiyama, T.; Tanaka, S.; Uchida, K.; Fujikawa, S.; Yamashita, Y.; Kato, M. Relationship among vegetation variables and vegetation features of arid lands derived from satellite data. Adv. Space Res. 2001, 28, 183–188. [CrossRef]
62. Vicente-Serrano, S.M. Evaluating the impact of drought using remote sensing in a mediterranean, semi-arid region. Nat. Hazards 2007, 40, 173–208. [CrossRef]
63. Zhao, X.; Zhou, D.; Fang, J. Satellite-based studies on large-scale vegetation changes in China. J. Integr. Plant Bio. 2012, 54, 713–728. [CrossRef] [PubMed]
64. Zhao, J. Research on Hyperspectral Remote Sensing Images Classification Based on K-means Clustering. Geospat. Inform. 2016, 14, 4.
65. Zhang, H.; Li, Y.; Jiang, H. Research status and Prospect of deep learning in hyperspectral image classification. Acta Autom. Sin. 2018, 44, 17.
66. Szulczewski, W.; Zyromski, A.; Jakubowski, W.; Biniak-Pierog, M. A new method for the estimation of biomass yield of giant miscanthus (Miscanthus giganteus) in the course of vegetation. Renew. Sust. Energ. Rev. 2018, 82, 1787–1795. [CrossRef]
67. Barriguinha, A.; Neto, M.D.; Gil, A. Vineyard yield estimation, prediction, and forecasting: A systematic literature review. Agronomy 2021, 11, 1789. [CrossRef]
68. Zou, L.; Cao, S.; Sanchez-Azofeifa, A. Evaluating the utility of various drought indices to monitor meteorological drought in tropical dry forests. Int. J. Biometeorol. 2020, 64, 701–711. [CrossRef]
69. Calzarano, F.; Pagnani, G.; Pisante, M.; Bellocci, M.; Cillo, G.; Metruccio, E.G.; Di Marco, S. Factors involved on tiger-stripe foliar symptom expression of esca of grapevine. Plants 2021, 10, 1041. [CrossRef]
70. Rumpf, T.; Mahlein, A.K.; Steiner, U.; Oerke, E.C.; De Hne, H.W.; Plümer, L. Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance. Comput. Electron. Agr. 2010, 74, 91–99. [CrossRef]
71. Cao, Y.F.; Xu, H.L.; Song, J.; Yang, Y.; Hu, X.H.; Wiyao, K.T.; Zhai, Z.Y. Applying spectral fractal dimension index to predict the spad value of rice leaves under bacterial blight disease stress. Plant Methods 2022, 18, 67. [CrossRef]
72. Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [CrossRef]
73. Zhang, J.C.; Tian, Y.Y.; Yan, L.J.; Wang, B.; Wang, L.; Xu, J.F.; Wu, K.H. Diagnosing the symptoms of sheath blight disease on rice stalk with an in-situ hyperspectral imaging technique. Biosyst. Eng. 2021, 209, 94–105. [CrossRef]
74. Yuan, L.; Yan, P.; Han, W.; Huang, Y.; Bao, Z. Detection of anthracnose in tea plants based on hyperspectral imaging. Comput. Electron. Agr. 2019, 167, 105039. [CrossRef]
75. Calderon, R.; Navas-Cortes, J.A.; Zarco-Tejada, P.J. Early detection and quantification of verticillium wilt in olive using hyperspectral and thermal imagery over large areas. Remote Sens. 2015, 7, 5584–5610. [CrossRef]
76. Huang, W.; Lu, J.; Ye, H.; Kong, W.; Yue, S. Quantitative identification of crop disease and nitrogen-water stress in winter wheat using continuous wavelet analysis. Int. J. Agr. Biol. Eng. 2018, 11, 8. [CrossRef]
77. Karadag, K.; Tenekeci, M.E.; Tasaltin, R.; Bilgili, A. Detection of pepper fusarium disease using machine learning algorithms based on spectral reflectance. Sustain. Comput Inform. Syst. 2020, 28, 100299. [CrossRef]
78. Xie, C.; Yang, C.; He, Y. Hyperspectral imaging for classification of healthy and gray mold diseased tomato leaves with different infection severities. Comput. Electron. Agr. 2017, 135, 154–162. [CrossRef]
79. Lu, J.; Ehsani, R.; Shi, Y.; Abdulridha, J.; Castro, A.D.; Xu, Y. Field detection of anthracnose crown rot in strawberry using spectroscopy technology. Comput. Electron. Agr. 2017, 135, 289–299. [CrossRef]
80. Weng, H.Y.; Lv, J.W.; Cen, H.Y.; He, M.B.; Zeng, Y.B.; Hua, S.J.; Li, H.Y.; Meng, Y.Q.; Fang, H.; He, Y. Hyperspectral reflectance imaging combined with carbohydrate metabolism analysis for diagnosis of citrus Huanglongbing in different seasons and cultivars. Sens. Actuators B-Chem. 2018, 275, 50–60. [CrossRef]
81. Nagasubramanian, K.; Jones, S.; Sarkar, S.; Singh, A.K.; Singh, A.; Ganapathysubramanian, B. Hyperspectral band selection using genetic algorithm and support vector machines for early identification of charcoal rot disease in soybean stems. Plant Methods 2018, 14, 86. [CrossRef]
82. Abdulridha, J.; Batuman, O.; Ampatzidis, Y. Uav-based remote sensing technique to detect citrus canker disease utilizing hyperspectral imaging and machine learning. Remote Sens. 2019, 11, 1373. [CrossRef]
83. Deng, X.; Huang, Z.; Zheng, Z.; Lan, Y.; Dai, F. Field detection and classification of citrus huanglongbing based on hyperspectral reflectance. Comput. Electron. Agr. 2019, 167, 105006. [CrossRef]
84. Lin, F.; Guo, S.; Tan, C.; Zhou, X.; Zhang, D. Identification of rice sheath blight through spectral responses using hyperspectral images. Sensors 2020, 20, 6243. [CrossRef] [PubMed]
85. Vijver, R.; Mertens, K.; Heungens, K.; Somers, B.; Saeys, W. In-field detection of Alternaria solani in potato crops using hyperspectral imaging. Comput. Electron. Agr. 2019, 168, 105106. [CrossRef]
86. Zhang, D.; Chen, G.; Zhang, H.; Jin, N.; Chen, Y. Integration of spectroscopy and image for identifying fusarium damage in wheat kernels using hyperspectral imaging. Spectrochim. Acta A 2020, 236, 118344. [CrossRef] [PubMed]
87. Gu, Q.; Sheng, L.; Zhang, T.H.; Lu, Y.W.; Zhang, Z.J.; Zheng, K.F.; Hu, H.; Zhou, H.K. Early detection of tomato spotted wilt virus infection in tobacco using the hyperspectral imaging technique and machine learning algorithms. Comput. Electron. Agr. 2019, 167, 105066. [CrossRef]
88. Calamita, F.; Imran, H.A.; Vescovo, L.; Mekhalfi, M.L.; Porta, N.L. Early identification of root rot disease by using hyperspectral reflectance: The case of pathosystem grapevine/armillaria. Remote Sens. 2021, 13, 2436. [CrossRef]
89. Zhao, X.H.; Zhang, J.C.; Huang, Y.B.; Tian, Y.Y.; Yuan, L. Detection and discrimination of disease and insect stress of tea plants using hyperspectral imaging combined with wavelet analysis. Comput. Electron. Agr. 2022, 193, 106717. [CrossRef]
90. Du, P.; Xia, J.; Xue, Z.; Tan, K.; Su, H.; Bao, R. Research progress of hyperspectral remote sensing image classification. Remote Sens. Bull. 2016, 20, 21.
91. Hou, P.; Yao, M.; Jia, W.; Zhang, F.; Wang, D. Spatial spectrum discriminant analysis for hyperspectral image classification. Opt. Precis. Eng. 2018, 26, 450–460.
92. Ghasimi, P.; Benediktsson, J.A.; Ulfarsson, M.O. The spectral-spatial classification of hyperspectral images based on Hidden Markov Random Field. IEEE T. Geosci. Remote Sens. 2014, 52, 2565–2574.
93. Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006, 313, 504–507. [CrossRef] [PubMed]
94. Hinton, G.E.; Osindero, S.; Teh, Y.W. A Fast Learning Algorithm for Deep Belief Nets. Neural Comput. 2014, 18, 1527–1554. [CrossRef]
95. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2012, 25, 1097–1105. [CrossRef]
96. Wei, F.; Li, S.; Fang, L. Spectral-spatial hyperspectral image classification via superpixel merging and sparse representation. IEEE Geosci. Remote. Sens. 2015, 18, 861–865.
97. Zhao, X.; Chen, Y.; Jia, X. Spectral-Spatial Classification of Hyperspectral Data Based on Deep Belief Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2381–2392.
98. Deng, X.L.; Zhu, Z.H.; Yang, J.C.; Zheng, Z.; Huang, Z.X.; Yin, X.B.; Wei, S.J.; Lan, Y.B. Detection of citrus huanglongbing based on multi-input neural network model of uav hyperspectral remote sensing. Remote Sens. 2020, 12, 2678. [CrossRef]
99. Zhong, P.; Gong, Z.; Li, S.; Schonlieb, C.B. Learning to Diversify Deep Belief Networks for Hyperspectral Image Classification. IEEE T. Geosci. Remote 2017, 55, 3516–3530. [CrossRef]
100. Fazari, A.; Pellicer-Valero, O.J.; Gomez-SancHs, J.; Bernardi, B.; Blasco, J. Application of deep convolutional neural networks for the detection of anthracnose in olives using vis/nir hyperspectral images. Comput. Electron. Agr. 2021, 187, 106252. [CrossRef]
101. Polder, G.; Blok, P.M.; Villiers, H.; Wolf, J.; Kamp, J. Potato virus detection in seed potatoes using deep learning on hyperspectral images. Front. Plant Sci. 2019, 10, 209. [CrossRef]
102. Zhang, X.; Han, L.; Dong, Y.; Shi, Y.; Sobeih, T. A deep learning-based approach for automated yellow rust disease detection from high-resolution hyperspectral uav images. Remote Sens. 2019, 11, 1554. [CrossRef]
103. Xiu, J.; Lu, J.; Shuai, W.; Hai, Q.; Shao, L. Classifying wheat hyperspectral pixels of healthy heads and fusarium head blight disease using a deep neural network in the wild field. Remote Sens. 2018, 10, 395.
104. Feng, L.; Wu, B.; Zhu, S.; Wang, J.; Zhang, C. Investigation on data fusion of multisource spectral data for rice leaf diseases identification using machine learning methods. Front. Plant Sci. 2020, 11, 577063. [CrossRef] [PubMed]
105. Hernandez, I.; Gutierrez, S.; Ceballos, S.; Iniguez, R.; Barrio, I.; Tardaguila, J. Artificial intelligence and novel sensing technologies for assessing downy mildew in grapevine. Horticulturae 2021, 7, 103. [CrossRef]
106. Nguyen, C.; Sagan, V.; Maimaitiyiming, M.; Maimaitijiang, M.; Bhadra, S.; Kwasniewski, M.T. Early detection of plant viral disease using hyperspectral imaging and deep learning. Sensors 2021, 21, 742. [CrossRef] [PubMed]
107. Lv, Y.P.; Lv, W.B.; Han, K.X.; Tao, W.T.; Zheng, L.; Weng, S.Z.; Huang, L.S. Determination of wheat kernels damaged by fusarium head blight using monochromatic images of effective wavelengths from hyperspectral imaging coupled with an architecture self-search deep network. Food Control 2022, 135, 108819.