Ссылки
- AfriTin Mining Ltd., 2019
AfriTin Mining Ltd.
Maiden JORC resource at Uis
Alternative Metal Market, London Stock Exchange (2019)
RNS number: 3635M
Google Scholar2.
Ali et al., 2017S.H. Ali, D. Giurco, N. Arndt, E. Nickless, G. Brown, A. Demetriades, R. Durrheim, M.A. Enriquez, J. Kinnaird, A. Littleboy, L.D. Meinert
Mineral supply for sustainable development requires resource governance
Nature, 543 (7645) (2017), pp. 367-372
View at publisherCrossrefView in ScopusGoogle Schola3.
Ashworth et al., 2018L. Ashworth, J.A. Kinnaird, P.A.M. Nex, R.M. Erasmus, W.J. Przybylowicz
Characterization of fluid inclusions from mineralized pegmatites of the Damara belt, Namibia: insight into late-stage fluid evolution and implications for mineralization
Mineral. Petrol., 112 (2018), pp. 753-765
View at publisherCrossrefView in ScopusGoogle Scholar4.
Beran, 2002A. Beran
Infrared spectroscopy of micas
Rev. Mineral. Geochem., 46 (1) (2002), pp. 351-369
View at publisherCrossrefGoogle Scholar5.
Boesche et al., 2015N.K. Boesche, C. Rogass, C. Lubitz, M. Brell, S. Herrmann, C. Mielke, S. Tonn, O. Appelt, U. Altenberger, H. Kaufmann
Hyperspectral REE (rare earth element) mapping of outcrops—applications for neodymium detection
Remote Sens., 7 (5) (2015), pp. 5160-5186
CrossrefView in ScopusGoogle Scholar 6.
Booysen et al., 2020R. Booysen, R. Jackisch, S. Lorenz, R. Zimmermann, M. Kirsch, P.A.M. Nex, R. Gloaguen
Detection of REEs with lightweight UAV-based hyperspectral imaging
Sci. Rep., 10 (1) (2020), pp. 1-12
Google Scholar 7.
Buckley et al., 2013S.J. Buckley, T.H. Kurz, J.A. Howell, D. Schneider
Terrestrial lidar and hyperspectral data fusion products for geological outcrop analysis
Comput. Geosci., 54 (2013), pp. 249-258
View PDFView articleView in ScopusGoogle Scholar8.
Cardoso-Fernandes et al., 2018J. Cardoso-Fernandes, A. Lima, A.C. Teodoro
Potential of Sentinel-2 data in the detection of lithium (Li)-bearing pegmatites: a study case
Earth Resources and Environmental Remote Sensing/GIS Applications IX, vol. 10790, International Society for Optics and Photonics (2018, October), p. 107900T
View in ScopusGoogle Scholar9.
Cardoso-Fernandes et al., 2020aJ. Cardoso-Fernandes, A.C. Teodoro, A. Lima, C. Mielke, F. Körting, E. Roda-Robles, J. Cauzid
Multi-scale approach using remote sensing techniques for lithium pegmatite exploration: first results
IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium, IEEE (2020), pp. 5226-5229
CrossrefView in ScopusGoogle Scholar10.
Cardoso-Fernandes et al., 2020bJ. Cardoso-Fernandes, A.C. Teodoro, A. Lima, M. Perrotta, E. Roda-Robles
Detecting Lithium (Li) mineralizations from space: current research and future perspectives
Appl. Sci., 10 (5) (2020), p. 1785
CrossrefView in ScopusGoogle Scholar11.
Carrivick et al., 2016J.L. Carrivick, M.W. Smith, D.J. Quincey
Structure from Motion in the Geosciences
John Wiley & Sons (2016)
Google Scholar12.
Clark, 1999R.N. Clark
Spectroscopy of rocks and minerals, and principles of spectroscopy
Man. Remote Sens., 3 (3–58) (1999), p. 2
Google Scholar13.
Crowley et al., 2003J.K. Crowley, D.E. Williams, J.M. Hammarstrom, N. Piatak, I.M. Chou, J.C. Mars
Spectral reflectance properties (0.4–2.5 μm) of secondary Fe-oxide, Fe-hydroxide, and Fe-sulphate-hydrate minerals associated with sulphide-bearing mine wastes
Geochemistry, 3 (3) (2003), pp. 219-228
CrossrefView in ScopusGoogle Scholar14.
Diehl, 1993B.T.M. Diehl
Rare metal pegmatites of the Cape Cross – Uis pegmatite belt, Namibia: geology, mineralisation, rubidium-strontium characteristics and petrogenesis
J. Afr. Earth Sci., 17 (1993), pp. 167-181
View in ScopusGoogle Scholar15.
EU Commission, 2020EU Commission
Study on the EU’s List of Critical Raw Materials – Final Report
European Commission, Brussels, Belgium (2020)
Google Scholar16.
Fuchsloch et al., 2018W.C. Fuchsloch, P.A.M. Nex, J.A. Kinnaird
Classification, mineralogical and geochemical variations in pegmatites of the Cape Cross – Uis pegmatite belt, Namibia
Lithos, 296-299 (2018), pp. 79-95
View PDFView articleView in ScopusGoogle Scholar17.
Fuchsloch et al., 2019aW.C. Fuchsloch, P.A.M. Nex, J.A. Kinnaird
The geochemical evolution of the Nb-Ta-Sn oxides from pegmatites of the Cape Cross-Uis pegmatite belt, Namibia
Miner. Mag., 86 (2019), pp. 161-179
CrossrefView in ScopusGoogle Scholar18.
Fuchsloch et al., 2019bW.C. Fuchsloch, T. Marais, J.A. Kinnaird, P.A.M. Nex
Characterisation of one of Africa’s Giants: the V1-V2 pegmatite, Uis, Namibia
Can. Mineral., 57 (2019), pp. 737-740
CrossrefView in ScopusGoogle Scholar19.
Gandhi and Sarkar, 2016S.M. Gandhi, B.C. Sarkar
Essentials of Mineral Exploration and Evaluation
Elsevier (2016)
Google Scholar20.
Harris et al., 1989M.J. Harris, E.K. Salje, B.K. Guttler, M.A. Carpenter
Structural states of natural potassium feldspar: an infrared spectroscopic study
Phys. Chem. Miner., 16 (7) (1989), pp. 649-658
View in ScopusGoogle Scholar21.
Hecker et al., 2010C. Hecker, M. Van der Meijde, F.D. Van der Meer
Thermal infrared spectroscopy on feldspars—successes, limitations and their implications for remote sensing
Earth Sci. Rev., 103 (1–2) (2010), pp. 60-70
View PDFView articleView in ScopusGoogle Scholar22.
Hecker et al., 2019C. Hecker, F.J. van Ruitenbeek, W.H. Bakker, B.J. Fagbohun, D. Riley, H.M. van der Werff, F.D. van der Meer
Mapping the wavelength position of mineral features in hyperspectral thermal infrared data
Int. J. Appl. Earth Obs. Geoinf., 79 (2019), pp. 133-140
View PDFView articleView in ScopusGoogle Scholar23.
Heredia et al., 2020F. Heredia, A.L. Martinez, V. Surraco Urtubey
The importance of lithium for achieving a low-carbon future: overview of the lithium extraction in the ‘Lithium Triangle’
J. Energy Nat. Resourc. Law, 38 (3) (2020), pp. 213-236
CrossrefView in ScopusGoogle Scholar24.
Hunt, 1977G.R. Hunt
Spectral signatures of particulate minerals in the visible and near infrared
Geophysics, 42 (3) (1977), pp. 501-513
View in ScopusGoogle Scholar25.
Jakob et al., 2017S. Jakob, R. Zimmermann, R. Gloaguen
The need for accurate geometric and radiometric corrections of drone-borne hyperspectral data for mineral exploration: Mephysto—A toolbox for pre-processing drone-borne hyperspectral data
Rem. Sens., 9 (1) (2017), p. 88
View at publisherCrossrefView in ScopusGoogle Scholar26.
James et al., 2017M.R. James, S. Robson, S. D’Oleire-Oltmanns, U. Niethammer
Optimising UAV topographic surveys processed with structure-from-motion: ground control quality, quantity and bundle adjustment
Geomorphology, 280 (2017), pp. 51-66
View PDFView articleView in ScopusGoogle Scholar27.
Kirsch et al., 2018M. Kirsch, S. Lorenz, R. Zimmermann, L. Tusa, R. Möckel, P. Hödl, R. Booysen, M. Khodadadzadeh, R. Gloaguen
Integration of terrestrial and drone-borne hyperspectral and photogrammetric sensing methods for exploration mapping and mining monitoring
Rem. Sens., 10 (9) (2018), p. 1366
View at publisherCrossrefView in ScopusGoogle Scholar28.
Kokaly et al., 2017R.F. Kokaly, R.N. Clark, G.A. Swayze, K.E. Livo, T.M. Hoefen, N.C. Pearson, R.A. Wise, W.M. Benzel, H.A. Lowers, R.L. Driscoll, A.J. Klein
USGS Spectral Library Version 7
U.S. Geological Survey Data Series 1035 (2017), p. 61,
10.3133/ds1035View at publisherGoogle Scholar29.
Krupnik and Khan, 2019D. Krupnik, S. Khan
Close-range, ground-based hyperspectral imaging for mining applications at various scales: review and case studies
Earth Sci. Rev., 198 (2019), p. 102952
View PDFView articleView in ScopusGoogle Scholar30.
Krupnik et al., 2016D. Krupnik, S. Khan, U. Okyay, P. Hartzell, H.W. Zhou
Study of Upper Albian rudist buildups in the Edwards Formation using ground-based hyperspectral imaging and terrestrial laser scanning
Sediment. Geol., 345 (2016), pp. 154-167
View PDFView articleView in ScopusGoogle Scholar31.
Kruse et al., 2003F.A. Kruse, J.W. Boardman, J.F. Huntington
Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping
IEEE Trans. Geosci. Remote Sens., 41 (6) (2003), pp. 1388-1400
View in ScopusGoogle Scholar32.
Kucheryavskiy, 2018S. Kucheryavskiy
Analysis of NIR spectroscopic data using decision trees and their ensembles
J. Anal. Test., 2 (3) (2018), pp. 274-289
CrossrefView in ScopusGoogle Scholar33.
Kurz et al., 2013T.H. Kurz, S.J. Buckley, J.A. Howell
Close-range hyperspectral imaging for geological field studies: workflow and methods
Int. J. Remote Sens., 34 (5) (2013), pp. 1798-1822
CrossrefView in ScopusGoogle Scholar34.
Laukamp et al., 2015C. Laukamp, I.C. Lau, P. Mason, P. Warren, J. Huntington, A. Green, L. Whitbourn, W. Wright, P. Connor
CSIRO Thermal infrared Spectral Library – Evaluation and status report, July 2015
(2015)
Google Scholar35.
Laukamp et al., 2021C. Laukamp, A. Rodger, M. LeGras, H. Lampinen, I.C. Lau, B. Pejcic, J. Stromberg, N. Francis, E. Ramanaidou
Mineral physicochemistry underlying feature-based extraction of mineral abundance and composition from shortwave, mid and thermal infrared reflectance spectra
Minerals, 11 (4) (2021), p. 347
CrossrefView in ScopusGoogle Scholar36.
London, 2018D. London
Ore-forming processes within granitic pegmatites
Ore Geol. Rev., 101 (2018), pp. 349-383
View PDFView articleView in ScopusGoogle Scholar37.
Lorenz, 2019S. Lorenz
The Need for Accurate Pre-processing Data Integration for the Application of Hyperspectral Imaging in Mineral Exploration
PhD thesis
Technische Universitat Bergakadamie Freiberg, Germany (2019), p. 163
Google Scholar38.
Lorenz et al., 2018S. Lorenz, S. Salehi, M. Kirsch, R. Zimmermann, G. Unger, E. Vest Sørensen, R. Gloaguen
Radiometric correction and 3D integration of long-range ground-based hyperspectral imagery for mineral exploration of vertical outcrops
Rem. Sens., 10 (2) (2018), p. 176
CrossrefView in ScopusGoogle Scholar39.
Lorenz et al., 2019S. Lorenz, P. Seidel, P. Ghamisi, R. Zimmermann, L. Tusa, M. Khodadadzadeh, I.C. Contreras, R. Gloaguen
Multi-sensor spectral imaging of geological samples: a data fusion approach using spatio-spectral feature extraction
Sensors, 19 (12) (2019), p. 2787
CrossrefView in ScopusGoogle Scholar40.
Lowe, 1999D.G. Lowe
Object recognition from local scale-invariant features
Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, IEEE (1999, September), pp. 1150-1157
View in ScopusGoogle Scholar41.
Marais, 2019T. Marais
The Uis Pegmatites: Morphology, Mineralisation and Distribution, with an Emphasis on the V1 and V2 Intrusions
MSc
University of the Witwatersrand (2019), p. 61
Google Scholar42.
Mars and Rowan, 2011J.C. Mars, L.C. Rowan
ASTER spectral analysis and lithologic mapping of the Khanneshin carbonatite volcano, Afghanistan
Geosphere, 7 (1) (2011), pp. 276-289
View in ScopusGoogle Scholar43.
Mauger et al., 2016A.J. Mauger, K. Ehrig, A. Kontonikas-Charos, C.L. Ciobanu, N.J. Cook, V.S. Kamenetsky
Alteration at the Olympic Dam IOCG–U deposit: insights into distal to proximal feldspar and phyllosilicate chemistry from infrared reflectance spectroscopy
Aust. J. Earth Sci., 63 (8) (2016), pp. 959-972
View in ScopusGoogle Scholar44.
Momose et al., 2011A. Momose, S. Miyatake, Y. Arvelyna, A. Nguno, K. Mhopjeni, M. Sibeso, A. Muyongo, E. Muvangua
Mapping pegmatite using HyMap data in southern Namibia
2011 IEEE International Geoscience and Remote Sensing Symposium, IEEE (2011, July), pp. 2216-2217
CrossrefView in ScopusGoogle Scholar45.
Richards, 1986T.E. Richards
Geological characteristics of rare-metal pegmatites of the Uis type in the Damara orogen, South West Africa/Namibia
Mineral Deposits of Southern Africa, 2 (1986), pp. 1845-1862
Google Scholar46.
Salje, 1987E. Salje
Thermodynamics of plagioclases I: Theory of the I1¯−P1¯ phase transition in anorthite and Ca-rich plagioclases
Phys. Chem. Miner., 14 (2) (1987), pp. 181-188
View in ScopusGoogle Scholar47.
Salje, 1994E.K.H. Salje
Phase transitions and vibrational spectroscopy in feldspars
Feldspars and their Reactions, Springer, Dordrecht. (1994), pp. 103-160
CrossrefGoogle Scholar48.
SciAps Inc., 2019SciAps Inc.
Z-300 LIBS Analyzer
Accessed on 29.09.2021. URL:
https://sciaps.com/libs-handheld-laser-analyzers/z-300/ (2019)
Google Scholar49.
Scott and Yang, 1997K.M. Scott, K. Yang
Spectral reflectance studies of white micas
439, Australian Mineral Industries Research Association Ltd. Report (1997), p. 35
Google Scholar50.
Simpson, 2015M.P. Simpson
Reflectance spectrometry (SWIR) of alteration minerals surrounding the Favona epithermal vein, Waihi vein system, Hauraki Goldfield
Proceedings of the AusIMM New Zealand Branch Annual Conference, Dunedin, New Zealand (2015, August), pp. 490-499
Google Scholar51.
Snyder et al., 2016C.J. Snyder, S.D. Khan, J.P. Bhattacharya, C. Glennie, D. Seepersad
Thin-bedded reservoir analogs in an ancient delta using terrestrial laser scanner and high-resolution ground-based hyperspectral cameras
Sediment. Geol., 342 (2016), pp. 154-164
View PDFView articleView in ScopusGoogle Scholar52.
Solomon and Rossman, 1988G.C. Solomon, G.R. Rossman
NH₄
+ in pegmatitic feldspars from the southern Black Hills, South Dakota
Am. Mineral., 73 (7–8) (1988), pp. 818-821
Google Scholar53.
Tappert et al., 2013M.C. Tappert, B. Rivard, R. Tappert, J. Feng
Using reflectance spectroscopy to estimate the orientation of quartz crystals in rocks
Can. Mineral., 51 (3) (2013), pp. 405-413
View at publisherCrossrefView in ScopusGoogle Scholar54.
Thiele et al., 2021S.T. Thiele, S. Lorenz, M. Kirsch, I.C. Contreras Acosta, L. Tusa, E. Herrmann, R. Möckel, R. Gloaguen
Multi-scale, multi-sensor data integration for automated 3-D geological mapping
Ore Geol. Rev., 136 (2021), p. 104252
View PDFView articleView in ScopusGoogle Scholar