Ссылки1. Balaram, V. Rare Earth Elements: A Review of Applications, Occurrence, Exploration, Analysis, Recycling, and Environmental Impact.
Geosci. Front. 2019,
10, 1285–1303. [
Google Scholar] [
CrossRef]
2. Charalampides, G.; Vatalis, K.I.; Apostoplos, B.; Ploutarch-Nikolas, B. Rare Earth Elements: Industrial Applications and Economic Dependency of Europe.
Procedia Econ. Financ. 2015,
24, 126–135. [
Google Scholar] [
CrossRef]
3. Atwood, D.A.
The Rare Earth Elements: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2013; ISBN 9781118632635. [
Google Scholar]
4. Golroudbary, S.R.; Makarava, I.; Kraslawski, A.; Repo, E. Global Environmental Cost of Using Rare Earth Elements in Green Energy Technologies.
Sci. Total Environ. 2022,
832, 155022. [
Google Scholar] [
CrossRef] [
PubMed]
5. Smith Stegen, K. Heavy Rare Earths, Permanent Magnets, and Renewable Energies: An Imminent Crisis.
Energy Policy 2015,
79, 1–8. [
Google Scholar] [
CrossRef]
6. Humphries, M.
Rare Earth Elements: The Global Supply Chain; DIANE Publishing: Darby, PA, USA, 2010; ISBN 9781437937985. [
Google Scholar]
7. Dent, P.C. Rare Earth Elements and Permanent Magnets (Invited).
J. Appl. Phys. 2012,
111, 07A721. [
Google Scholar] [
CrossRef]
8. Croat, J.J. Current Status and Future Outlook for Bonded Neodymium Permanent Magnets (Invited).
J. Appl. Phys. 1997,
81, 4804–4809. [
Google Scholar] [
CrossRef]
9. Grasso, V.B.
Rare Earth Elements in National Defense: Background, Oversight Issues, and Options for Congress; Congressional Research Service: Washington, DC, USA, 2011.
10. Gholz, E.
Rare Earth Elements and National Security; JSTOR: New York, NY, USA, 2014. [
Google Scholar]
11. Daigle, B.; DeCarlo, S.
Rare Earths and the US Electronics Sector: Supply Chain Developments and Trends; Office of Industries, US International Trade Commission: Washington, DC, USA, 2021.
12. Chen, W.-Q.; Eckelman, M.J.; Sprecher, B.; Chen, W.; Wang, P. Interdependence in Rare Earth Element Supply between China and the United States Helps Stabilize Global Supply Chains.
One Earth 2024,
7, 242–252. [
Google Scholar] [
CrossRef]
13. Wang, P.; Yang, Y.-Y.; Heidrich, O.; Chen, L.-Y.; Chen, L.-H.; Fishman, T.; Chen, W.-Q. Regional Rare-Earth Element Supply and Demand Balanced with Circular Economy Strategies.
Nat. Geosci. 2024,
17, 94–102. [
Google Scholar] [
CrossRef]
14. Yang, J.; Song, W.; Liu, Y.; Zhu, X.; Kynicky, J.; Chen, Q. Mineralogy and Element Geochemistry of the Bayan Obo (China) Carbonatite Dykes: Implications for REE Mineralization.
Ore Geol. Rev. 2024,
165, 105873. [
Google Scholar] [
CrossRef]
15. Olson, J.C. Geologic Setting of the Mountain Pass Rare Earth Deposits, San Bernardino County, California.
US Geol. Surv. Open File Rep. 1952,
52–110, 109. [
Google Scholar] [
CrossRef]
16. Mariano, A.N.; Mariano, A. Rare Earth Mining and Exploration in North America.
Elements 2012,
8, 369–376. [
Google Scholar] [
CrossRef]
17. Poletti, J.E.; Cottle, J.M.; Hagen-Peter, G.A.; Lackey, J.S. Petrochronological Constraints on the Origin of the Mountain Pass Ultrapotassic and Carbonatite Intrusive Suite, California.
J. Petrol. 2016,
57, 1555–1598. [
Google Scholar] [
CrossRef]
18. Watts, K.E.; Haxel, G.B.; Miller, D.M. Temporal and Petrogenetic Links Between Mesoproterozoic Alkaline and Carbonatite Magmas at Mountain Pass, California.
Econ. Geol. 2022,
117, 1–23. [
Google Scholar] [
CrossRef]
19. Dushyantha, N.; Batapola, N.; Ilankoon, I.M.S.K.; Rohitha, S.; Premasiri, R.; Abeysinghe, B.; Ratnayake, N.; Dissanayake, K. The Story of Rare Earth Elements (REEs): Occurrences, Global Distribution, Genesis, Geology, Mineralogy and Global Production.
Ore Geol. Rev. 2020,
122, 103521. [
Google Scholar] [
CrossRef]
20. Dutta, T.; Kim, K.-H.; Uchimiya, M.; Kwon, E.E.; Jeon, B.-H.; Deep, A.; Yun, S.-T. Global Demand for Rare Earth Resources and Strategies for Green Mining.
Environ. Res. 2016,
150, 182–190. [
Google Scholar] [
CrossRef] [
PubMed]
21. Edahbi, M.; Plante, B.; Benzaazoua, M. Environmental Challenges and Identification of the Knowledge Gaps Associated with REE Mine Wastes Management.
J. Clean. Prod. 2019,
212, 1232–1241. [
Google Scholar] [
CrossRef]
22. Haque, N.; Hughes, A.; Lim, S.; Vernon, C. Rare Earth Elements: Overview of Mining, Mineralogy, Uses, Sustainability and Environmental Impact.
Resources 2014,
3, 614–635. [
Google Scholar] [
CrossRef]
23. Zhang, X.; Pazner, M.; Duke, N. Lithologic and Mineral Information Extraction for Gold Exploration Using ASTER Data in the South Chocolate Mountains (California).
ISPRS J. Photogramm. Remote Sens. 2007,
62, 271–282. [
Google Scholar] [
CrossRef]
24. Battsengel, A.; Batnasan, A.; Narankhuu, A.; Haga, K.; Watanabe, Y.; Shibayama, A. Recovery of Light and Heavy Rare Earth Elements from Apatite Ore Using Sulphuric Acid Leaching, Solvent Extraction and Precipitation.
Hydrometallurgy 2018,
179, 100–109. [
Google Scholar] [
CrossRef]
25. Xu, T.; Zheng, X.; Ji, B.; Xu, Z.; Bao, S.; Zhang, X.; Li, G.; Mei, J.; Li, Z. Green Recovery of Rare Earth Elements under Sustainability and Low Carbon: A Review of Current Challenges and Opportunities.
Sep. Purif. Technol. 2024,
330, 125501. [
Google Scholar] [
CrossRef]
26. Fassnacht, F.E.; White, J.C.; Wulder, M.A.; Næsset, E. Remote Sensing in Forestry: Current Challenges, Considerations and Directions.
Forestry 2023,
97, 11–37. [
Google Scholar] [
CrossRef]
27. Ceccato, V.; Ioannidis, I. Using Remote Sensing Data in Urban Crime Analysis: A Systematic Review of English-Language Literature from 2003 to 2023.
Int. Crim. Justice Rev. 2024, 10575677241237960. [
Google Scholar] [
CrossRef]
28. Fu, L.-L.; Pavelsky, T.; Cretaux, J.-F.; Morrow, R.; Farrar, J.T.; Vaze, P.; Sengenes, P.; Vinogradova-Shiffer, N.; Sylvestre-Baron, A.; Picot, N.; et al. The Surface Water and Ocean Topography Mission: A Breakthrough in Radar Remote Sensing of the Ocean and Land Surface Water.
Geophys. Res. Lett. 2024,
51, e2023GL107652. [
Google Scholar] [
CrossRef]
29. Chen, W.; Li, X.; Qin, X.; Wang, L. Geological Remote Sensing: An Overview. In
Remote Sensing Intelligent Interpretation for Geology: From Perspective of Geological Exploration; Chen, W., Li, X., Qin, X., Wang, L., Eds.; Springer: Singapore, 2024; pp. 1–14. ISBN 9789819989973. [
Google Scholar]
30. Lausch, A.; Selsam, P.; Pause, M.; Bumberger, J. Monitoring Vegetation- and Geodiversity with Remote Sensing and Traits.
Philos. Trans. A Math. Phys. Eng. Sci. 2024,
382, 20230058. [
Google Scholar] [
CrossRef] [
PubMed]
31. Schilling, S.; Dietz, A.; Kuenzer, C. Snow Water Equivalent Monitoring—A Review of Large-Scale Remote Sensing Applications.
Remote Sens. 2024,
16, 1085. [
Google Scholar] [
CrossRef]
32. Peyghambari, S.; Zhang, Y. Hyperspectral Remote Sensing in Lithological Mapping, Mineral Exploration, and Environmental Geology: An Updated Review.
J. Appl. Remote. Sens. 2021,
15, 031501. [
Google Scholar] [
CrossRef]
33. Sabins, F.F. Remote Sensing for Mineral Exploration.
Ore Geol. Rev. 1999,
14, 157–183. [
Google Scholar] [
CrossRef]
34. Cudjoe, M.N.M.; Kwarteng, E.V.S.; Anning, E.; Bodunrin, I.R.; Andam-Akorful, S.A. Application of Remote Sensing and Geographic Information System Technologies to Assess the Impact of Mining: A Case Study at Emalahleni.
NATO Adv. Sci. Inst. Ser. E Appl. Sci. 2024,
14, 1739. [
Google Scholar] [
CrossRef]
35. Wang, Q.; Guo, H.; Chen, Y.; Lin, Q.; Li, H. Application of Remote Sensing for Investigating Mining Geological Hazards.
Int. J. Digit. Earth 2013,
6, 449–468. [
Google Scholar] [
CrossRef]
36. Pour, A.B.; Zoheir, B.; Pradhan, B.; Hashim, M. Editorial for the Special Issue: Multispectral and Hyperspectral Remote Sensing Data for Mineral Exploration and Environmental Monitoring of Mined Areas.
Remote Sens. 2021,
13, 519. [
Google Scholar] [
CrossRef]
37. Boesche, N.K.; Rogass, C.; Lubitz, C.; Brell, M.; Herrmann, S.; Mielke, C.; Tonn, S.; Appelt, O.; Altenberger, U.; Kaufmann, H. Hyperspectral REE (Rare Earth Element) Mapping of Outcrops-Applications for Neodymium Detection.
Remote Sens. 2015,
7, 5160–5186. [
Google Scholar] [
CrossRef]
38. Rowan, L.C.; Kingston, M.J.; Crowley, J.K. Spectral Reflectance of Carbonatites and Related Alkalic Igneous Rocks; Selected Samples from Four North American Localities.
Econ. Geol. 1986,
81, 857–871. [
Google Scholar] [
CrossRef]
39. Neave, D.A.; Black, M.; Riley, T.R.; Gibson, S.A.; Ferrier, G.; Wall, F.; Broom-Fendley, S. On the Feasibility of Imaging Carbonatite-Hosted Rare Earth Element Deposits Using Remote Sensing.
Econ. Geol. 2016,
111, 641–665. [
Google Scholar] [
CrossRef]
40. Tran, T.V.; Reef, R.; Zhu, X. A Review of Spectral Indices for Mangrove Remote Sensing.
Remote Sens. 2022,
14, 4868. [
Google Scholar] [
CrossRef]
41. Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications.
J. Sens. 2017,
2017, 1353691. [
Google Scholar] [
CrossRef]
42. Radočaj, D.; Šiljeg, A.; Marinović, R.; Jurišić, M. State of Major Vegetation Indices in Precision Agriculture Studies Indexed in Web of Science: A Review.
Agriculture 2023,
13, 707. [
Google Scholar] [
CrossRef]
43. Prasad, A.D.; Ganasala, P.; Hernández-Guzmán, R.; Fathian, F. Remote Sensing Satellite Data and Spectral Indices: An Initial Evaluation for the Sustainable Development of an Urban Area.
Sustain. Water Resour. Manag. 2022,
8, 19. [
Google Scholar] [
CrossRef]
44. Ousmanou, S.; Fozing, E.M.; Kwékam, M.; Fodoue, Y.; Jeatsa, L.D.A. Application of Remote Sensing Techniques in Lithological and Mineral Exploration: Discrimination of Granitoids Bearing Iron and Corundum Deposits in Southeastern Banyo, Adamawa Region-Cameroon.
Earth Sci. Inform. 2023,
16, 259–285. [
Google Scholar] [
CrossRef]
45. Michałowska, K.; Pirowski, T.; Głowienka, E.; Szypuła, B.; Malinverni, E.S. Sustainable Monitoring of Mining Activities: Decision-Making Model Using Spectral Indexes.
Remote Sens. 2024,
16, 388. [
Google Scholar] [
CrossRef]
46. Montero, D.; Aybar, C.; Mahecha, M.D.; Martinuzzi, F.; Söchting, M.; Wieneke, S. A Standardized Catalogue of Spectral Indices to Advance the Use of Remote Sensing in Earth System Research.
Sci. Data 2023,
10, 197. [
Google Scholar] [
CrossRef]
47. Verstraete, M.M.; Pinty, B. Designing Optimal Spectral Indexes for Remote Sensing Applications.
IEEE Trans. Geosci. Remote Sens. 1996,
34, 1254–1265. [
Google Scholar] [
CrossRef]
48. Gadea, O.C.A.; Khan, S.D. Detection of Bastnäsite-Rich Veins in Rare Earth Element Ores Through Hyperspectral Imaging.
IEEE Geosci. Remote Sens. Lett. 2023,
20, 1–4. [
Google Scholar] [
CrossRef]
49. Gadea, O.; Khan, S.; Sisson, V. Estimating Rare Earth Elements at Various Scales with Bastnaesite Indices from Mountain Pass.
Ore Geol. Rev. under review.
50. Olson, J.C.; Shawe, D.R.; Pray, L.C.; Sharp, W.N. Rare-Earth Mineral Deposits of the Mountain Pass District, San Bernardino County, California.
Science 1954,
119, 325–326. [
Google Scholar] [
CrossRef]
51. Bennett, V.C.; Depaolo, D.J. Proterozoic Crustal History of the Western United States as Determined by Neodymium Isotopic Mapping.
GSA Bull. 1987,
99, 674–685. [
Google Scholar] [
CrossRef]
52. Wooden, J.L.; Miller, D.M. Chronologic and Isotopic Framework for Early Proterozoic Crustal Evolution in the Eastern Mojave Desert Region, SE California.
J. Geophys. Res. 1990,
95, 20133–20146. [
Google Scholar] [
CrossRef]
53. Whitmeyer, S.J.; Karlstrom, K.E. Tectonic Model for the Proterozoic Growth of North America.
Geosphere 2007,
3, 220–259. [
Google Scholar] [
CrossRef]
54. Multidisciplinary Investigations of REE Mineralization at Mountain Pass and in the Southeast Mojave Desert, California. Available online:
https://www.usgs.gov/centers/gmeg/science/multidisciplinary-investigations-ree-mineralization-mountain-pass-and#overview (accessed on 27 August 2024).
55. Denton, K.M.; Ponce, D.A.; Peacock, J.R.; Miller, D.M. Geophysical Characterization of a Proterozoic REE Terrane at Mountain Pass, Eastern Mojave Desert, California, USA.
Geosphere 2020,
16, 456–471. [
Google Scholar] [
CrossRef]
56. Castor, S.B. The Mountain Pass Rare-Earth Carbonatite and Associated Ultrapotassic Rocks, California.
Can. Mineral. 2008,
46, 779–806. [
Google Scholar] [
CrossRef]
57. Haxel, G.
Ultrapotassic Mafic Dikes and Rare Earth Element- and Barium-Rich Carbonatite at Mountain Pass, Mojave Desert, Southern California: Summary and Field Trip Localities; US Geological Survey: Reston, VA, USA, 2005. [
CrossRef]
58. Watts, K.E.; Miller, D.M.; Ponce, D.A. Mafic Alkaline Magmatism and Rare Earth Element Mineralization in the Mojave Desert, California: The Bobcat Hills Connection to Mountain Pass.
Geochem. Geophys. Geosyst. 2024,
25, e2023GC011253. [
Google Scholar] [
CrossRef]
59. Verplanck, P.L.; Hitzman, M.W.
Introduction: Rare Earth and Critical Elements in Ore Deposits; Society of Economic Geologists, Inc.: Littleton, CO, USA, 2016. [
Google Scholar] [
CrossRef]
60. Verplanck, P.L.; Mariano, A.N.; Mariano, A.
Rare Earth Element Ore Geology of Carbonatites; GeoScienceWorld: McLean, VA, USA, 2016. [
Google Scholar] [
CrossRef]
61. Long, K.R.; Van Gosen, B.S.; Foley, N.K.; Cordier, D. The Principal Rare Earth Elements Deposits of the United States: A Summary of Domestic Deposits and a Global Perspective. In
Non-Renewable Resource Issues: Geoscientific and Societal Challenges; Sinding-Larsen, R., Wellmer, F.-W., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 131–155. ISBN 9789048186792. [
Google Scholar]
62. HSC-2 Hyperspectral Camera 450–800 nm. Available online:
https://senop.fi/product/hsc-2-hyperspectral-camera-450-800nm/ (accessed on 18 August 2024).
63. Products SPECIM. Available online:
https://www.specim.com/products/ (accessed on 18 August 2024).
64. Buy Matrice 600 Pro—DJI Store. Available online:
https://store.dji.com/product/matrice-600-pro (accessed on 18 August 2024).
65. Matrice 300 RTK—Industrial Grade Mapping Inspection Drones—DJI Enterprise. Available online:
https://enterprise.dji.com/matrice-300 (accessed on 2 September 2024).
66. Support for Zenmuse L1. Available online:
https://www.dji.com/support/product/zenmuse-l1 (accessed on 2 September 2024).
67. End-to-End 3D Drone Mapping Software. Available online:
https://www.esri.com/en-us/cp/site-scan-for-arcgis-3d-drone-mapping-software/overview (accessed on 2 September 2024).
68. Mavic 3 Multispectral Edition—See More, Work Smarter—DJI Agricultural Drones. Available online:
https://ag.dji.com/mavic-3-m (accessed on 18 August 2024).
69. ASD FieldSpec 4—High Resolution Spectroradiometer. Available online:
http://www.malvernpanalytical.com/en/products/product-range/asd-range/fieldspec-range/fieldspec4-hi-res-high-resolution-spectroradiometer (accessed on 18 August 2024).
70. Di Gennaro, S.F.; Toscano, P.; Gatti, M.; Poni, S.; Berton, A.; Matese, A. Spectral Comparison of DRONE-Based Hyper and Multispectral Cameras for Precision Viticulture.
Remote Sens. 2022,
14, 449. [
Google Scholar] [
CrossRef]
71. Sousa, J.J.; Toscano, P.; Matese, A.; Di Gennaro, S.F.; Berton, A.; Gatti, M.; Poni, S.; Pádua, L.; Hruška, J.; Morais, R.; et al. UAV-Based Hyperspectral Monitoring Using Push-Broom and Snapshot Sensors: A Multisite Assessment for Precision Viticulture Applications.
Sensors 2022,
22, 6574. [
Google Scholar] [
CrossRef] [
PubMed]
72. Geospatial Solutions. Available online:
https://www.nv5geospatialsoftware.com/Solutions/ENVI (accessed on 18 August 2024).
73. Desktop GIS Software. Available online:
https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview (accessed on 18 August 2024).