Следующий продукт — оптические приемопередающие бортовые устройства с применением фотонных интегральных схем. Они будут использоваться в системе ФИС и будут сконструированы и изготовлены с учетом предъявляемых требований к радиоационной стойкости. Первое поколение относится к 10-гигабитный классу, УГТ-7 по нем будет достигнут в 2025 г. Второе поколение относится к 50-гигабитному классу, УГТ-7 по нему будет достигнут к 2030 г. Бортовой интеррогатор с использованием фотонных интегральных схем будет использоваться в системе ФИС. УГТ-7 будет достигнут в 2025 г.
Будут разработаны технологии оптический связи на основе современных форматов модуляции, а также систем квантовой криптографии с применением фотонных интегральных схем. В современных оптических системах связи применяются сложные форматы модуляции, позволяющие передавать большое количество информации без необходимости увеличения ширины полосы передаваемых частот. В рамках данной части предполагается разработка ФИС для таких современных форматов модуляции для применения в системах космической связи с учетом требований радиационной стойкости. Первое поколение относится к 10-гигабитному классу, УГТ-7 будет достигнут к 2025 г. Второе поколение относится к 50-гигабитному классу, УГТ-7 будет достигнут к 2030 г.
Следующая группа продуктов — оптические стандарты частот (ОСЧ) для космических применений, они являются основными элементом полезной нагрузки навигационных космических аппаратов. Оптические стандарты частоты, предложенные к разработке в рамках перспективных исследований, могут устанавливаться на малые космические аппараты для формирования низкоорбитальной навигационной группировки. Кроме этого, они могут применяться в качестве высокостабильного опорного генератора частоты для различных научных задач.
В том числе, в рамках данной группы продуктов, будет разработан блок бортовых синхронизирюущих устройств — бортовое синхронизирующее устройство на базе оптического репера частоты для применения в космических аппаратов ГЛОНАСС и малых космических аппаратах. Первое поколение будет обеспечивать уровень суточной нестабильности 10е-16 УГТ-7 по нему будет доступен в 2025 г. Второе поколение будет обеспечивать уровень суточной стабильности — 10е-17 — 10e-18, УГТ-7 будет достигнут к 2030 г.
Также в рамках данной группы продуктов будет разработан блок гравиметрии и градиометрии — транспорабельный автономный атомный гравиметр, созданный на базе технологий оптических стандартов частоты с уровнем чувствительности 10е-8 — 10е-9. УГТ-7 будет достигнут в 2025 г. Также будет разработан блок сличений и синхронизации ОСЧ Земля-орбита — система сличения и синхронизации в оптическом диапазоне бортовых оптических реперов частоты с наземными оптическими стандартами частоты. УГТ-7 будет достигнут к 2030 г.
Следующий продукт — прецизионный датчик солнечной ориентации космических аппаратов. Речь идет о малогабаритном прецизионном датчике измерения направления на Солнце. Он может применяться в качестве основного датчика системы ориентации перспективных малых космических аппаратов в случаях, когда точности существующих малогабаритных солнечных датчиков не достаточно, но установка приборы звездной ориентации невозможна или нецелесообразна. УГТ-7 будет достигнут к 2025 г.
Отдельная группа продуктов связана с материалами и технологиями производства литий-ионных аккумуляторов высокой емкости для космических аппаратов, в том числе адаптированные под использованием на МКА. В их числе — катодные материалы для литий-ионных аккумуляторов. с увеличенной удельной емкостью. В рамках первого поколения УГТ-7 будет достигнут в 2025 г., в рамках второго поколения УГТ-7 будет достигнут в 2030 г.
Другая разработка в рамках данной группы продуктов — технологии производства призматических и цилиндрических ячеек литий-ионнных аккумуляторов высокой емкости, адаптированные под малые космические аппараты. Данные ячейки предназначены для стабильной работы под воздействием факторов космического пространства. Первое поколение будет обладать удельной емкости 200 ВТ*ч/кг, УГТ-7 будет достигнут к 2025 г. Второе поколение будет обладать удельной емкостью 250 Вт*ч/кг, УГТ-7 будет достигнут к 2030 г.
Следующая группа продуктов — перспективные композиционные материалы и элементы космических аппаратов из них. К ним относятся полимерные композиционные материалы, стойкие к термокриоциклированию, и технология изготовления криогенных емкостей на их основе. Речь идет о криогенных баках с отработанной технологией сочленения композит-металл, изготавливаемые по безавтоклавной технологии, не имеющие технологических ограничений по габаритам изделий. УГТ-7 будет достигнут к 2025 г.
Второй продукт в данной группе — полимерные композиционные материалы с повышенной стойкостью к воздействиям условий открытого космоса, Речь идет о новом поколение полимерных композиционных материалов для изготовления элементов космических аппаратов. УГГ-7 будет достигнут к 2025 г.
Запланировано создание компьютерной системы моделирования группировок и космических аппаратов, Система будет обеспечивать: определение с помощью моделирования предварительного облика группировки; определение параметров для технических заданий на аппараты/подсистемы/компоненты космических аппаратов; выбор оптимальных решений с помощью многовариантных расчетов; проведение полного имитационного моделирования группировки, космического аппарата (подсистем и полезных нагрузок, включая оптические камеры, РСА, устройства связи) и наземных станций при решении целевых задач ДЗЗ, связи и мониторинга космического пространства. УГТ-9 будет достигнут к 2025 г.
Планируется создать автоматический центр управления полетами многоспутниковых группировок. Для каждого космического аппарата группировки будет составляться персональное техническое задание на съемку и предоставляться услуги связи или мониторинг космического пространства. Сбор и анализ телеметрической информации будет проводится в автоматическом режиме. Также периодически центр управления полетами будет проводит проверку имеющихся в распоряжении космических аппаратов и оценивает возможности группировки. К 2025 г. будет достигнуто УГТ-6.
Уницифированный комплекс управления космическим аппаратом будет адаптирован под широкий спектр вариантов построения космических аппаратов и позволит существенно сократить временные и трудовые затраты на создание комлпексов управления космическими аппаратами. Комплекс будет включать в себя наборы алгоритмов управления, модели систем и элементов космических аппаратов, системы тестов и систему отработки предлагаемых алгоритмов на имитационном моделировании космических аппаратов. УГТ-6 будет достигнут в 2025 г.
Алгоритмы «сверхразрешения» для обработки радиолокационных данных повысят качества изображения, получаемого после обработки голограммы, включающие борьбу с шумами, обработку изображений со слабым входным сигналом, повышение разрешения, поиск ключевых объектов, распознавания информации и пр. К 2025 г. будет достигнут УГТ-8.
Алгоритмы предварительной обработки данных ДЗЗ на борту в оптическом и радиолокационном диапазонах создаются с целью отсева ненужной информации, понижения ее детализации, уменьшения объема передаваемой информации, повышения ресурса работы полезной нагрузки и проведение детализации информации, представляющей интерес и проводящие ее предварительную обработку. К 2025 г. будет достигнут УГТ-8.
Планируется создать программный комплекс обработки спутниковых снимков в видимом и гиперспектральном диапазонах на основе глубокого обучения и обучения с подкреплением. Комплекс направлен на решение проблемы обработки зашумленных данных спутниковых изображений. Разрабатываемые методы решают ряд задач: устранение шума; устранение размытия в случае, если матрица представляет собой импульсную характеристику (или функцию рассеяния точки) визуализирующей системы; увеличения разрешения (т.н. задача «supperesolution») изображения в случае, когда матрица представляет собой комбинацию функции рассеяния точки и матрицы понижающей дискретизации. Комплекс будет включать в себя алгоритмы, адаптированные и функционирующие непосредственно в устройствах спутника, а также систему обработки изображений в наземных центрах обработки данных. К 2025 г. будет достигнут УГТ-6.
Квантовая связь, интернет вещей и 5G в космосе
В рамках поднаправления ««Перспективные технологии для космических систем и сервисов» « запланировано создание еще ряда продуктов. Бортовой терминал квантовой связи «спутник — Земля» для использования на МКА создается для реализации квантового распределения ключей. Он будет функционировать совместно с наземными приемными терминалами квантовых коммуникаций (стационарными и транспортабельными).К 2025 г. будет достигнут УГТ-6.
Запланирована разработка наноспутниковой платформы, ориентированной на создание линейки наноспутников для проведения фундаментальных и прикладных космических исследований. Конструктивно-компоновочная схема платформы формата CuberSat 3U будет представлять собой плотную одностековую компоновку бортовых систем. Он будет включать в себя: приемо-передатчик, построенный по технологии SDR; замки и антенную систему (применением жестких вибраторов для получения более стабильных параметров антенного устройства во время полета); компьютеры (допускается применение нескольких типов контроллеров с несколькими различными вычислительными ядрами, поддерживающими, в том числе, и параллельные вычисления). Платформа будет допускать масштабирование до формата CuberSar 6U. К 2025 г. будет достигнут УГТ-6.
Также планируется создать платформу наноспутников для решения широкого класса задач в околоземном и долунном космическом пространстве. Платформа формата CuberSat 12U будет предназначена для решения широкого класса научно-технических задач по исследованию околоземного и долунного космического пространства. Особенностями наноспутниковой платформы станут: наличие раскрывающихся панелей солнечной батарей (до 40 Вт) и двигательной установки для коррекции орбиты; высокоскоростная радиолиния; система терморегулирования выделенного отсека; раскрывающиеся штанги с научной аппаратурой, повышенная радиационная стойкость; бортовое ПО с высоким уровнем отказоустойчивости. Платформа будет допускать масштабирование до формата CuberSat. К 2025 г. планируется достичь УГТ-5.
Универсальные модульные бортовые системы управления ориентацией и стабилизацией, оптимизированные для применения на МКА будут представлять из себя модульные комплексы управления ориентацией и стабилизацией МКА с варьируемым составом универсальных датчиков и масштабируемых исполнительных устройств, управляемых бортовым вычисленным модулем. Предлагаемые к разработке на ЭКБ класса «industrial» приборы будут обладать сниженной стоимостью постановки на производство с сохранением показателей надежности благодаря усовершенствованным технологиям комплексирования. Применения передовых алгоритмов позволит реализовать улучшенные функциональные характеристики как составных частей комплексов управления (точность датчиков и стабильность исполнительных устройств), так и комплексов в целом (оптимизация энергетических потоков в системе управления, реализация требовательных к ресурсам алгоритмов баллистической пропагации). К 2025 г. будет достигнуто УГТ-6.
Разрабатываемая универсальная автоматизированная система высокоточного отделения наноспутников на базе электромагнитного привода будет представлять из себя высокотехнологичный инновационный продукт, позволяющий с высокой точностью в автоматизированном режиме обеспечивать отделения одиночных и групп наноспутников с различными заданными скоростями по заранее выбранной программе с минимальной угловой скоростью отделяемого объекта. К 2025 г. будет достигнут УГТ-6. К 2025 г. будет достигнуто УГТ-7 в части унификации способов создания отработочно-экспериментальной полезной нагрузки.
Технологии серийной сборки и испытаний малых космических аппаратов предполагают создание производственной ячейки — демонстратора роботизированной сборки малого космического аппарат во взаимодействии с сопутствующими автоматизированными процедурами хранения и логистики комплектующих сборки, тестирования и испытаний, складирования готовой продукции, а также отдельными ручными операциями. К 2025 г. будет доступно УГТ-7. К 2030 г. будет достигнуто УГТ-5 в части спутниковой платформы для выполнения задач по дозаправке и сервисному обслуживанию космических аппаратов.
Спутниковая платформа для решения задачи очистки орбиты от космического мусора разрабатывается для размещения в ее составе устройств захвата космического мусора с целью его последующего увода с орбиты либо переработки/утилизации. В рамках платформы будут предлагаться системы контактной и бесконтактной формы взаимодействия «спутника-уборщика» с объектом космического мусора, в том числе системы типа «гарпун», «сеть», «манипулятор», «трос», «шар-баллон», а также системы по электростатическому и ионному взаимодействию с объектами космического мусора (путем электростатистического отталкивания/притяжения, сдутию потоком частиц факела электрического ракетного двигателя). К 2030 г. будет достигнуто УГТ-5.
Разработка спутниковой платформы для размещения в ее составе устройств захвата космического мусора для его последующего увода с орбиты, либо переработки/утилизации. В рамках платформы будут предлагаться системы контактной и бесконтактной формы взаимодействия спутника-уборщика с объектом космического мусора, в т.ч. системы типа «гарпун», «сеть», «манипулятор», «трос», «шар-баллон», а также системы по электростатическому и ионному взаимодействию с объектами космического мусора (путем электростатического отталкивания/притяжения, сдутию потоком частиц факела ЭРД).
Эшелонированные многоуровненые группировки МКА-БПЛА (беспилотный летательный аппарат) для задач дистанционного зондирования будет представлять из себя мультиантенные системы для БПЛА, решающие задачи передачи данных (с использованием гибридного канала связи), навигации и дистанционного зондирования земли, поддерживающие протоколы пилотируемой авиации и позволяющие решить задачу наблюдения и навигации беспилотных воздушных судов в общем воздушном пространстве. Для реализации и эффективной эксплуатации БПЛА предлагается создать систему гибридной сети цифровой связи, обеспечивающую надежную передачу данных, между базовыми эксплуатационными центрами и точками базирования и применение БПЛА посредством эффективного использования спутникового и наземного каналов связи для двухстороннего обмена информацией. За счет применения БПЛА разрешающая способность системы ДЗЗ составляет 0,1 м. К 2025 г. будет достигнут УГТ-7.
Запланирована разработка открытой спутниковой платформы. Речь идет о создании открытой документированной стандартизированной архитектуры малых космических аппаратов в части: механической архитектуры; архитектуры бортового ПО; электрических интерфейсов; архитектуры информационного сопряжения бортовых устройств. Открытость и документированность спутниковой платформы, в сочетании с поддержкой со стороны консорциума и созданием открытого сообщества разработчиков алгоритмов, электронных блоков и ПО, обеспечит снижение временных и финансовых затрат на разработку и согласование механического, электрического и информационного взаимодействия между производителями бортовых систем и комплексов, а также быстрое развитие платформы за счет вовлечения широкого круга участников. К 2030 г. будет достигнута УГТ-7.
На базе алгоритмов искусственного интеллекта запланирована разработка бортовых алгоритмов. Соответствующее бортовое ПО обеспечит самооптимизацию режимов работы и параметров бортового оборудования в зависимости от текущей роли данного космического аппарата в формации с применением межспутниковой радиосвязи. К 2025 г. будет достигнуто УГТ-6.
Запланирована заработка математического, алгоритмического и бортового ПО системы коррекции орбиты малых космических аппаратов с целью поддержания заданной пространственной группировки либо самоорганизации заданной группировки малых космических аппаратов. Речь идет об алгоритмах управления системой коррекции орбиты малого космического аппарат и их программная реализация для автономного поддержания группой спутниковой заданной орбитальной формации, в том числе без участия наземных комплексов управления. К 2025 г. УГТ-6.
Предполагается создание высокоскоростных систем передачи данных большого объема в космическом и наземном сегментах. Речь идет о системе высокоскоростной передачи данных с применением адаптивных методов отказоустойчивого кодирования, основанных на технологиях сжатия многомерных данных без потери точности и нейронных сетей для решения задачи оптимальной маршрутизации. Разрабатываемая технология будет учитывать особенности систем связи на основе оптических каналов. К 2025 г. будет достигнуто УГТ-7.
Запланировано создание интегрированной низкоскоростной сети передачи данных в космическом и наземном сегментах космической системы. Модуль приемопередатчика будет сделан на базе технологии LoRa, имеющего сетевой уровень для подключения к сети космической группировки, а также блок антенн. Первоначально планируется создать экспериментальную сеть, состоящую из одного наноспутника формата CuberSat 3U и двух наземных станций. В дальнейшем будет реализована сеть для космической группировки из трех и более наноспутников. К 2025 г. будет достигнуто УГТ-5.
Запланировано создание гиперспектральной камеры видимого диапазона. Количество спектральных каналов составит140. Габариты камеры составят 300 мм x 100 мм x 100 мм, вес — не более 3 кг. Также запланирована разработка гиперспектральной камеры видимого и ближнего ИК диапазонов с количеством спектральных каналов — 250 и габаритами — 300 мм x 200 мм x 200 мм. Вес камеры будет не более 8 кг. У обоих камер к 2025 г. будет достигнут УГТ-7.
Предполагается создание облачного сервиса хранения и анализа гиперспектральных данных ДЗЗ. Предполагается создать программный комплекс, реализующий полный цикл обработки гиперспектральных данных на основе глубокого обучения (сбор, разметка, обучение, классификация) в рамках реальных задач в интересах сельского и нефтегазового хозяйств, экологического мониторинга и силовых ведомств. К 2025 г. будет достигнут УГТ-7.
Оптико-электронная полезная нагрузка для дистанционного зондирования Земли из космоса в различных диапазонах спектра будет выполнена в компактном формате и небольшом весе и предоставлять высокое, для своих габаритов, разрешение. В 2024 г. будет достигнут УГт-7.
Терминал межспутниковой лазерной связи на основе дифракционной оптики будет представлять из себя систему лазерной связи, предназначенную для высокоскоростной передаче информации между низкоорбитальными малыми космическими аппаратами. Технология будет осуществляться с применением адаптивных методов отказоустойчивого кодирования, основанных на технологиях сжатия многомерных данных без потери точности и нейронных сетей для решения задач оптимальной маршрутизации. К 2025 г. будет достигнуто УГТ-7.
Испытательная спутниковая платформа будет предназначена для натурных испытаний материалов и покрытий, радиоэлектронных компонентов и малогогабаритнных радиоэлектронных устройств, а также микробиологических объектов в космических условиях на заданной орбите в течение заданного времени. Спутниковая платформа обеспечивает проведение испытаний с последующим прогнозируемым сведением с орбиты и неразрушающей доставки испытуемого элемента на Землю. К 2030 г. будет достигнуто УГТ-6.
Наземная станция управления космическими аппаратами будет представлять из себя наземную аппаратуру связи для командно-телеметрической радиолонии, а также линии высокоскоростного приема/передачи данных «Земля — космос» и «космос — Земля» с применением технологий криптографии, в том числе квантовой, для защиты трафика от перехвата или подмены. К 2025 г. будет достигнуто УГТ-7.
В части интеграции наземного и космического сегментов связи в стандартах 5G и выше будут разработаны технические решения для создания интегрированных/гибридных наземных и космических сетей подвижной связи для современных и перспективных поколений связи 5G Advanced-6G. К 2030 г. будет достигнуто УГТ-7.
Транспортабельные наземные приемные терминалы для систем спутниковых квантовых коммуникаций будут функционировать совместно с бортовыми терминалами квантовой связи, устанавливаемыми на МКА. Терминалы будут обеспечивать интеграцию с наземными магистральными сетями квантовых коммуникаций, а также с традиционными открытыми информационными сетями для обеспечения квантово-защищенной связи между географически удаленными наземными объектами с использованием квантовых ключей, распределенных с использованием МКА. К 2025 г. будет достигнуто УГТ-6.
Нейронная сеть для поиска кораблей-нарушителей
Ряд продуктов будет создан в рамках поднаправления «Развитие наземной инфраструктуры», за которое отвечает группа компаний «Сканэкс». В частности, будет создана земная станция приема данных с космических аппаратов. Диаметр зеркала состаивт 3 м, скорость приема данных — до 1,5 Гбит/с. К 2025 гю будет достигнуто УГТ-9.
Другой продукт — «Scanex maritime» цифровая платформа геосервисов оперативного мониторинга навигационной, инженерно-технической и экологической безопасности морских объектов и акваторий. Цифровая платформа обеспечит следующие функции: использование данных с новых космических аппаратов, в том числе планируемых к запуску российских спутников «Кондор» и «Обзор»; наличие систем искусственного интеллекта для автоматизации работ (детектирование и дрейф нефтяных пятен, опасных ледовых образований — айсбергов); наличие нейронной сети для автоматического выявления судов — нарушителей, плавающих с выключенной системой АИС; наличие нейронной сети для автоматического планирования маршрута движения судов во льдах. К 2025 г. будет готово достигнуто УГТ-9.
Следующий продукт — «Fires.ru: онлайн-сервис «Карта пожаров». Данный сервис работает более 10 лет, является крупным социальным проектом, с 1 июня 2019 г. его посетило свыше 300 тыс. человек. Новая версия будет обладать следующими функциями: увеличенная скорость обновления данных, новые алгоритмы и источники данных; наличие модели прогнозирования пожаров на основе метеоданных. УГТ-9 будет достигнут к 2025 г.
Спутниковая связь и вещание
За поднаправление «Спутниковая связь и вещание» отвечает госпредприятие «Космическая связь». В первую очередь, предполагается обеспечить доступ к емкости космического сегмента. Речь идет о предоставлении современных и качественных услуг в области спутниковой связи и вещания на территории России, стран Европы, Северной и Южной Америки, центральной части Африки и Ближнего Востока из орбитальной позиции 11 град. з.д. в интересах государственных органов, населения и корпоративных клиентов. УГТ-9 будет достигнут к 2030 г.
Второй продукт — управление существующими и перспективными космическими аппаратами (оригиналы ПО). Речь идет о модернизации аппаратно-программных комплексов (АПК) центра управления полетами (ЦУП) «Сколково» и резервного ЦУП (РЦУП) «Железногорск» (Красноярский край) с заменой общесистемного ПО и устаревшего оборудования зарубежного производства, а также разработка специального ПО управления космическими аппаратами. УГТ-9 будет достигнут к 2025 г.
В части оказание услуг по техническому обслуживанию оборудования (услуги спутниковой связи, кроме услуг для целей теле-радиовещания) предполагается обеспечить комплексное использование инфраструктуры и внедрение централизованного эксплуатационно-технического обслуживания оборудования и систем в круглосточном режиме силами и средствами ЦКС «Железногорск». УГТ-9 будет доступен к 2030 г.
Сервис доставки поправок высокоточной навигации через спутниковые каналы связи представляет из себя доставку поправок навигации системам высокоточного позиционирования с использованием отечественной системы ГЛОНАСС для обеспечения сантиметровой точности в задачах точного земледелия (автоматизация процессов управления сельскохозяйственной техникой). УГТ-9 будет достигнут к 2025 г.
Сервис доставки телевизионного сигнала представляет из себя разработку и внедрение отечественного технологического программного комплекса для отправки и приема шифрованного спутникового ТВ сигнала. Основными элементами программного комплекса являются: программный комплекс, обеспечивающий шифрование и передачу ТВ потока; система Digital Right Management (средства защиты контента от неправомерного доступа); системы шифрования сигнала для серверной станции на основе криптоустойчивых алгоритмов собственной разработки. Программный комплекс должен будет обеспечивать защиту от подмены потока, возможность мониторинга на каждом этапе и возможность передавать дешифрованный спутниковый поток по unicast/multicast или HLS/DASh протоколам и дешифровать поток с помощью CAM модулей. УГТ-9 будет достигнут к 2025 г.