Ссылки1. Bemis, S.; Micklethwaite, S.; Turner, D.; James, M.R.; Akciz, S.; Thiele, S.T.; Bangash, H.A. Ground-based and UAV-Based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology.
J. Struct. Geol. 2014,
69, 163–178. [
Google Scholar] [
CrossRef]
2. Dering, G.M.; Micklethwaite, S.; Thiele, S.T.; Vollgger, S.A.; Cruden, A.R. Review of drones, photogrammetry and emerging sensor technology for the study of dykes: Best practises and future potential.
J. Volcanol. Geotherm. Res. 2019,
373, 148–166. [
Google Scholar] [
CrossRef]
3. Janiszewski, M.; Uotinen, L.; Merkel, J.; Leveinen, J.; Rinne, M. Virtual Reality Learning Environments for Rock Engineering, Geology and Mining Education. In Proceedings of the 54th U.S. Rock Mechanics/Geomechanics Symposium (ARMA-2020-1101), Golden, CO, USA, 28 June–1 July 2020. [
Google Scholar]
4. Nesbit, P.; Durkin, P.R.; Hugenholtz, C.H.; Hubbard, S.; Kucharczyk, M. 3-D stratigraphic mapping using a digital outcrop model derived from UAV images and structure-from-motion photogrammetry.
Geosphere 2018,
14, 2469–2486. [
Google Scholar] [
CrossRef] [
Green Version]
5. Marques, A.; Horota, R.K.; de Souza, E.M.; Kupssinskü, L.; Rossa, P.; Aires, A.S.; Bachi, L.; Veronez, M.R.; Gonzaga, L.; Cazarin, C.L. Virtual and digital outcrops in the petroleum industry: A systematic review.
Earth-Sci. Rev. 2020,
208, 103260. [
Google Scholar] [
CrossRef]
6. Laukamp, C.; Rodger, A.; LeGras, M.; Lampinen, H.; Lau, I.; Pejcic, B.; Stromberg, J.; Francis, N.; Ramanaidou, E. Mineral Physicochemistry Underlying Feature-Based Extraction of Mineral Abundance and Composition from Shortwave, Mid and Thermal Infrared Reflectance Spectra.
Minerals 2021,
11, 347. [
Google Scholar] [
CrossRef]
7. Kurz, T.H.; Buckley, S.J.; Howell, J.A. Close-range hyperspectral imaging for geological field studies: Workflow and methods.
Int. J. Remote Sens. 2013,
34, 1798–1822. [
Google Scholar] [
CrossRef]
8. Kurz, T.H.; Buckley, S.J.; Howell, J.A.; Schneider, D. Integration of panoramic hyperspectral imaging with terrestrial lidar data.
Photogramm. Rec. 2011,
26, 212–228. [
Google Scholar] [
CrossRef]
9. Lorenz, S.; Salehi, S.; Kirsch, M.; Zimmermann, R.; Unger, G.; Vest Sørensen, E.; Gloaguen, R. Radiometric Correction and 3D Integration of Long-Range Ground-Based Hyperspectral Imagery for Mineral Exploration of Vertical Outcrops.
Remote Sens. 2018,
10, 176. [
Google Scholar] [
CrossRef] [
Green Version]
10. Thiele, S.T.; Lorenz, S.; Kirsch, M.; Acosta, I.C.C.; Tusa, L.; Herrmann, E.; Möckel, R.; Gloaguen, R. Multi-scale, multi-sensor data integration for automated 3-D geological mapping.
Ore Geol. Rev. 2021,
136, 104252. [
Google Scholar] [
CrossRef]
11. Aasen, H.; Honkavaara, E.; Lucieer, A.; Zarco-Tejada, P.J. Quantitative Remote Sensing at Ultra-High Resolution with UAV Spectroscopy: A Review of Sensor Technology, Measurement Procedures, and Data Correction Workflows.
Remote Sens. 2018,
10, 1091. [
Google Scholar] [
CrossRef] [
Green Version]
12. Kim, J.; Chi, J.; Masjedi, A.; Flatt, J.E.; Crawford, M.M.; Habib, A.F.; Lee, J.; Kim, H. High-resolution hyperspectral imagery from pushbroom scanners on unmanned aerial systems.
Geosci. Data J. 2021. [
Google Scholar] [
CrossRef]
13. Goldstein, N.; Wiggins, R.; Woodman, P.; Saleh, M.; Nakanishi, K.; Fox, M.E.; Tannian, B.E.; Ziph-Schatzberg, L.; Soletski, P. Compact visible to extended-SWIR hyperspectral sensor for unmanned aircraft systems (UAS). In Proceedings of the Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXIV, Bellingham, WA, USA, 17–19 April 2018; Volume 10644, p. 106441G. [
Google Scholar]
14. Barton, I.F.; Gabriel, M.J.; Lyons-Baral, J.; Barton, M.D.; Duplessis, L.; Roberts, C. Extending geometallurgy to the mine scale with hyperspectral imaging: A pilot study using drone- and ground-based scanning.
Min. Met. Explor. 2021,
38, 799–818. [
Google Scholar] [
CrossRef]
15. Arroyo-Mora, J.; Kalacska, M.; Inamdar, D.; Soffer, R.; Lucanus, O.; Gorman, J.; Naprstek, T.; Schaaf, E.; Ifimov, G.; Elmer, K.; et al. Implementation of a UAV–Hyperspectral Pushbroom Imager for Ecological Monitoring.
Drones 2019,
3, 12. [
Google Scholar] [
CrossRef] [
Green Version]
16. Booysen, R.; Jackisch, R.; Lorenz, S.; Zimmermann, R.; Kirsch, M.; Nex, P.A.M.; Gloaguen, R. Detection of REEs with lightweight UAV-based hyperspectral imaging.
Sci. Rep. 2020,
10, 17450. [
Google Scholar] [
CrossRef] [
PubMed]
17. Kirsch, M.; Lorenz, S.; Zimmermann, R.; Tusa, L.; Möckel, R.; Hödl, P.; Booysen, R.; Khodadadzadeh, M.; Gloaguen, R. Integration of Terrestrial and Drone-Borne Hyperspectral and Photogrammetric Sensing Methods for Exploration Mapping and Mining Monitoring.
Remote Sens. 2018,
10, 1366. [
Google Scholar] [
CrossRef] [
Green Version]
18. JuanManuel, J.R.; Padua, L.; Hruska, J.; Feito, F.R.; Sousa, J.J. An Efficient Method for Generating UAV-Based Hyperspectral Mosaics Using Push-Broom Sensors.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021,
14, 6515–6531. [
Google Scholar] [
CrossRef]
19. Turner, D.; Lucieer, A.; McCabe, M.; Parkes, S.; Clarke, I. Pushbroom Hyperspectral Imaging from an Unmanned Aircraft System (UAS)—Geometric Processingworkflow and Accu-racy Assessment.
ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017,
XLII-2/W6, 379–384. [
Google Scholar] [
CrossRef] [
Green Version]
20. Angel, Y.; Turner, D.; Parkes, S.; Malbeteau, Y.; Lucieer, A.; McCabe, M.F. Automated Georectification and Mosaicking of UAV-Based Hyperspectral Imagery from Push-Broom Sensors.
Remote Sens. 2020,
12, 34. [
Google Scholar] [
CrossRef] [
Green Version]
21. Schlaepfer, D.; Schaepman, M.E.; Itten, K.I. PARGE: Parametric geocoding based on GCP-calibrated auxiliary data.
SPIE’s Int. Symp. Opt. Sci. Eng. Instrum. 1998,
3438, 334–344. [
Google Scholar] [
CrossRef]
22. Ghamisi, P.; Shahi, K.R.; Duan, P.; Rasti, B.; Lorenz, S.; Booysen, R.; Thiele, S.; Contreras, I.C.; Kirsch, M.; Gloaguen, R. The Potential of Machine Learning for a More Responsible Sourcing of Critical Raw Materials.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021,
14, 8971–8988. [
Google Scholar] [
CrossRef]
23. Inamdar, D.; Kalacska, M.; Arroyo-Mora, J.P.; Leblanc, G. The Directly-Georeferenced Hyperspectral Point Cloud: Preserving the Integrity of Hyperspectral Imaging Data.
Front. Remote Sens. 2021,
2, 9. [
Google Scholar] [
CrossRef]
24. Buckley, S.; Kurz, T.H.; Howell, J.A.; Schneider, D. Terrestrial lidar and hyperspectral data fusion products for geological outcrop analysis.
Comput. Geosci. 2013,
54, 249–258. [
Google Scholar] [
CrossRef]
25. Bosellini, A. Progradation geometries of carbonate platforms: Examples from the Triassic of the Dolomites, northern Italy.
Sedimentology 1984,
31, 1–24. [
Google Scholar] [
CrossRef]
26. Neri, C.; Gianolla, P.; Furlanis, S.; Caputo, R.; Bosellini, A. Note Illustrative Della Carta Geologica d’Italia. In
Foglio Cortina D’ampezzo 029; ISPRA: Rome, Italy, 2007. [
Google Scholar]
27. Inama, R.; Menegoni, N.; Perotti, C. Syndepositional fractures and architecture of the lastoni di formin carbonate platform: Insights from virtual outcrop models and field studies.
Mar. Pet. Geol. 2020,
121, 104606. [
Google Scholar] [
CrossRef]
28. Blendinger, W.; Blendinger, E. Windward-leeward effects on Triassic carbonate bank margin facies of the Dolomites, northern Italy.
Sediment. Geol. 1989,
64, 143–166. [
Google Scholar] [
CrossRef]
29. Bosellini, A.; Neri, C.
The Sella Platform. Dolomieu Conference on Carbonate Platforms and Dolomitization; Guidebook Excursion B; KARO-Druck: Ortisei, Italy, 1991. [
Google Scholar]
30. Cadrobbi, L.; Nobile, G.; Lutterotti, G.
Studio Di Supporto Alla Stesura Del Piano Regolatore Generale Del Comune Di Canazei, Studio Associato Di Geologia Applicata; Canazei, Italy, 1995; Volume 1955-1. [
Google Scholar]
31. Mollema, P.N.; Antonellini, M. Development of strike-slip faults in the dolomites of the Sella Group, Northern Italy.
J. Struct. Geol. 1999,
21, 273–292. [
Google Scholar] [
CrossRef]
32. Girardeau-Montaut, D. CloudCompare. 2020. Available online:
https://cloudcompare.org/ (accessed on 16 December 2021).
33. Akenine-Moller, T.; Haines, E.; Hoffman, N.
Real-Time Rendering; AK Peters/crc Press: Natick, MA, USA, 2019; ISBN 1-315-36545-6. [
Google Scholar]
34. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python.
Nat. Methods 2020,
17, 261–272. [
Google Scholar] [
CrossRef] [
PubMed] [
Green Version]
35. Thiele, S.T.; Lorenz, S.; Kirsch, M.; Gloaguen, R. A Novel and Open-Source Illumination Correction for Hyperspectral Digital Outcrop Models.
IEEE Trans. Geosci. Remote Sens. 2021,
14, 1–12. [
Google Scholar] [
CrossRef]
36. Oren, M.; Nayar, S.K. Seeing beyond Lambert’s law. In
Proceedings of the Computer Vision—ECCV ’94; Springer: Berlin/Heidelberg, Germany, 1994; pp. 269–280. [
Google Scholar]
37. Berthaume, M.A.; Winchester, J.; Kupczik, K. Ambient occlusion and PCV (portion de ciel visible): A new dental topographic metric and proxy of morphological wear resistance.
PLoS ONE 2019,
14, e0215436. [
Google Scholar] [
CrossRef]
38. Huguenin, R.L.; Jones, J.L. Intelligent information extraction from reflectance spectra: Absorption band positions.
J. Geophys. Res. Space Phys. 1986,
91, 9585–9598. [
Google Scholar] [
CrossRef]
39. Van der Meer, F. Analysis of spectral absorption features in hyperspectral imagery.
Int. J. Appl. Earth Obs. Geoinf. 2004,
5, 55–68. [
Google Scholar] [
CrossRef]
40. Van Ruitenbeek, F.; Bakker, W.H.; van der Werff, H.; Zegers, T.E.; Oosthoek, J.H.; Omer, Z.A.; Marsh, S.; van der Meer, F.D. Mapping the wavelength position of deepest absorption features to explore mineral diversity in hyperspectral images.
Planet. Space Sci. 2014,
101, 108–117. [
Google Scholar] [
CrossRef]
41. Sunshine, J.; Pieters, C.M.; Pratt, S.F. Deconvolution of mineral absorption bands: An improved approach.
J. Geophys. Res. Space Phys. 1990,
95, 6955–6966. [
Google Scholar] [
CrossRef] [
Green Version]
42. Beckert, J.; Vandeginste, V.; McKean, T.J.; Alroichdi, A.; John, C.M. Ground-based hyperspectral imaging as a tool to identify different carbonate phases in natural cliffs.
Int. J. Remote Sens. 2018,
39, 4088–4114. [
Google Scholar] [
CrossRef] [
Green Version]
43. Kurz, T.H.; San Miguel, G.; Dubucq, D.; Kenter, J.; Miegebielle, V.; Buckley, S.J. Quantitative Mapping of Dolomitization Using Close-Range Hyperspectral Imaging: Kimmeridgian Carbonate Ramp (Alacón, NE Spain).
Geosphere 2022, in press. [
Google Scholar]
44. Buckley, S.J.; Ringdal, K.; Naumann, N.; Dolva, B.; Kurz, T.H.; Howell, J.A.; Dewez, T.J. LIME: Software for 3-D visualization, interpretation, and communication of virtual geoscience models.
Geosphere 2019,
15, 222–235. [
Google Scholar] [
CrossRef]
45. Hodgetts, D.; Gawthorpe, R.L.; Wilson, P.; Rarity, F. Integrating Digital and Traditional Field Techniques Using Virtual Reality Geological Studio (VRGS). In
Proceedings of the 69th EAGE Conference and Exhibition Incorporating SPE EUROPEC 2007; EAGE Publications BV: Utrecht, The Netherlands, 2007; p. cp-27-00300. [
Google Scholar]
46. Koirala, P.; Løke, T.; Baarstad, I.; Fridman, A.; Hernandez, J. Real-time hyperspectral image processing for UAV applications, using HySpex Mjolnir-1024. In
Proceedings of the Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXIII; SPIE: Bellingham, WA, USA; Washington, DC, USA, 2017; Volume 10198, p. 1019807. [
Google Scholar]