ССЫЛКИ
[1] S. S. Wahla, J. H. Kazmi, A. Sharifi, S. A. Shirazi, A. Tariq, and H. J. Smith, “Assessing spatiotemporal mapping and monitoring of climatic variability using SPEI and RF machine learning models,” Geocarto Int., vol. 38, no. 1, pp. 1–20, Jun. 2022.
[2] A. Sharifi, H. Mahdipour, E. Moradi, and A. Tariq, “Agricultural field extraction with deep learning algorithm and satellite imagery,” J. Indian Soc. Remote Sens., vol. 50, no. 2, pp. 417–423, 2022.
[3] K. Amankulova, N. Farmonov, and L. Mucsi, “Time-series analysis of sentinel-2 satellite images for sunflower yield estimation,” Smart Agricultural Technol., vol. 3, 2023, Art. no. 100098.
[4] A. Tariq, S. Siddiqui, A. Sharifi, and S. H. I. A. Shah, “Impact of spatiotemporal land surface temperature on cropping pattern and land use and land cover changes using satellite imagery, Hafiz Abad district, Punjab, province of Pakistan,” Arabian J. Geosci., vol. 15, no. 11, 2022, Art. no. 1045.
[5] T. de Sousa Leite, R. M. Oliveira de Freitas, N. da Silva Dias, J. L. Dallabona Dombroski, and N. W. Nogueira, “The interplay between leaf water potential and osmotic adjustment on photosynthetic and growth parameters of tropical dry forest trees,” J. Forestry Res., vol. 7, pp. 1–9, 2022.
[6] T.Tscharntke,I.Grass,T.C.Wanger,C.Westphal,andP.Batáry,“Beyond organic farming– harnessing biodiversity-friendly landscapes,” Trends Ecol. Evol., vol. 36, no. 10. pp. 919–930, 2021.
[7] J. Sun, X. Zhao, Y. Fang, F. Gao, C. Wu, and J. Xia, “Effects of water and salt for groundwater-soil systems on root growth and architecture of Tamarix chinensis in the Yellow River Delta, China,” J. Forestry Res., vol. 335, 2022, pp. 104–111.
[8] A.J.Bennett,G.D.Bending,D.Chandler,S.Hilton,andP.Mills,“Meeting the demand for crop production: The challenge of yield decline in crops grown in short rotations,” Biol. Rev., vol. 87, no. 1. pp. 52–71, 2012.
[9] N. A. Schellhorn, V. Gagic, and R. Bommarco, “Time will tell: Resource continuity bolsters ecosystem services,” Trends Ecol. Evol., vol. 30, no. 9. pp. 524–530, 2015.
[10] A. Orynbaikyzy, U. Gessner, and C. Conrad, “Crop type classification using a combination of optical and radar remote sensing data: A review,” Int. J. Remote Sens., vol. 40, no. 17, pp. 6553–6595, 2019.
[11] L. Blickensdörfer, M. Schwieder, D. Pflugmacher, C. Nendel, S. Erasmi, andP. Hostert, “Mapping of croptypes and crop sequences with combined time series of sentinel-1, sentinel-2 and landsat 8 data for Germany,” Remote Sens. Environ., vol. 269, 2022, Art. no. 112831.
[12] A. Kosari, A. Sharifi, A. Ahmadi, and M. Khoshsima, “Remote sensing satellite’s attitude control system: Rapid performance sizing for pas sive scan imaging mode,” Aircr. Eng. Aerosp. Technol., vol. 92, no. 7, pp. 1073–1083, 2020.
[13] S. Jalayer, A. Sharifi, D. Abbasi-Moghadam, A. Tariq, and S. Qin, “Modeling and predicting land use land cover spatiotemporal changes: Acase study in Chalus watershed, Iran,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 15, pp. 5496–5513, 2022, doi: 10.1109/JS TARS.2022.3189528.
[14] B. Lu, P. D. Dao, J. Liu, Y. He, and J. Shang, “Recent advances of hyperspectralimagingtechnologyandapplicationsinagriculture,”Remote Sens., vol. 12, no. 16, 2020, Art. no. 2659.
[15] S. M. M. Nejad, D. Abbasi-Moghadam, A. Sharifi, N. Farmonov, K. Amankulova, and M. Laszlo, “Multispectral crop yield prediction using 3D-convolutional neural networks and attention convolutional LSTM approaches,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 16, pp. 254–266, 2023, doi: 10.1109/JSTARS.2022.3223423.
[16] W. Zhang et al., “An improved feature set for hyperspectral image classification: Harmonic analysis optimized by multiscale guided filter,” IEEE J. Sel. Topics Appl. Earth Observe. Remote Sens., vol. 13, pp. 3903–3916, 2020, doi: 10.1109/JSTARS.2020.3006772.
[17] X. Kang, S. Li, and J. A. Benediktsson, “Feature extraction of hyperspectral images with image fusion and recursive filtering,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 6, pp. 3742–3752, Jun. 2014, doi: 10.1109/TGRS.2013.2275613.
[18] M.D.Mura,J.A.Benediktsson,B.Waske,andL.Bruzzone,“Morphological attribute profiles for the analysis of very high resolution images,”IEEE Trans. Geosci. Remote Sens., vol. 48, no. 10, pp. 3747–3762, Oct. 2010, doi: 10.1109/TGRS.2010.2048116.
[19] K. S. He, D. Rocchini, M. Neteler, and H. Nagendra, “Benefits of hyper spectral remote sensing for tracking plant invasions,” Diversity Distrib., vol. 17, no. 3, pp. 381–392, 2011
[20] M. Liu et al., “The impact of spatial resolution on the classification of vegetation types in highly fragmented planting areas based on unmanned aerial vehicle hyperspectral images,” Remote Sens., vol. 12, no. 1, 2020, Art. no. 126.
[21] K. M. Carlson, G. P. Asner, R. F. Hughes, R. Ostertag, and R. E. Martin, “HyperspectralremotesensingofcanopybiodiversityinHawaiianlowland rainforests,” Ecosyst., vol. 10, no. 4, pp. 536–549, 2007.
[22] A.Sharifi,“Flood mapping using relevance vector machine and SAR data: AcasestudyfromAqqala,Iran,”J.IndianSoc.RemoteSens.,vol.48,no.9, pp. 1289–1296, 2020.
[23] A. Banskota, R. H. Wynne, and N. Kayastha, “Improving within-genus tree species discrimination using the discrete wavelet transform applied to airborne hyperspectral data,” Int. J. Remote Sens., vol. 32, no. 13, pp. 3551–3563, 2011.
[24] M. Beland et al., “Mapping changing distributions of dominant species in oil-contaminated salt marshes of Louisiana using imaging spectroscopy,” Remote Sens. Environ., vol. 182, pp. 192–207, 2016. [25] B.CsendesandL.Mucsi,“Identificationandspectralevaluationofagricul tural crops on hyperspectral airborne data,” J. Environ. Geography,vol.9, no. 3–4, Nov. 2016.
[26] C. Kwan et al., “Deep learning for land cover classification using only a few bands,” Remote Sens., vol. 12, no. 12, 2020, Art. no. 2000.
[27] X. Yang, Y. Ye, X. Li, R. Y. K. Lau, X. Zhang, and X. Huang, “Hyperspectral image classification with deep learning models,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 9, pp. 5408–5423, Sep. 2018, doi: 10.1109/TGRS.2018.2815613.
[28] S. K. Roy, S. R. Dubey, S. Chatterjee, and B. B. Chaudhuri, “FuSENet: Fused squeeze-and-excitation network for spectral-spatial hyperspectral image classification,” IET Image Process., vol. 14, no. 8, pp. 1653–1661, 2020, doi: 10.1049/iet-ipr.2019.1462.
[29] Q. Xu, Y. Xiao, D. Wang, and B. Luo, “CSA-MSO3DCNN: Multiscale octave 3DCNNwithchannelandspatialattentionforhyperspectralimage classification,” Remote Sens., vol. 12, no. 1, 2020, Art. no. 188.
[30] A.LiandZ.Shang,“A new spectral-spatial Pseudo-3D dense network for hyperspectral image classification,” in Proc. Int. Joint Conf. Neural Netw., 2019, pp. 1–7.
[31] N. Laban, B. Abdellatif, H. M. Ebeid, H. A. Shedeed, and M. F. Tolba, “Reduced 3-D deep learning framework for hyperspectral image clas sification,” in Proc. Int. Conf. Adv. Mach. Learn. Technol. Appl., 2020, pp. 13–22.
[32] J. W. Liu, F. L. Zuo, Y. X. Guo, T. Y. Li, and J. M. Chen, “Research on improved wavelet convolutional wavelet neural networks,” Appl. Intell., vol. 51, no. 6, pp. 4106–4126, 2021.
[33] D. F. Hesser, S. Mostafavi, G. K. Kocur, and B. Markert, “Identification of acoustic emission sources for structural health monitoring applications based on convolutional neural networks and deep transfer learning,” Neurocomputing, vol. 453, pp. 1–12, 2021.
[34] J. Liu, P. Li, X. Tang, J. Li, and J. Chen, “Research on improved convolutional wavelet neural network,” Sci. Rep., vol. 11, no. 1, 2021, Art. no. 17941.
[35] P. Liu, H. Zhang, K. Zhang, L. Lin, and W. Zuo, “Multi-level wavelet-CNN for image restoration,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Workshops, 2018, pp. 886–895, doi: 10.1109/CVPRW.2018.00121.
[36] M. X. B. Rodriguez et al., “Deep adaptive wavelet network,” in Proc. IEEE Winter Conf. Appl. Comput. Vis., 2020, pp. 3100–3108, doi: 10.1109/WACV45572.2020.9093580. [37] J. Yang, Y. Q. Zhao, J. C. W. Chan, and L. Xiao, “A multi-scale wavelet 3D-CNNforhyperspectralimagesuper-resolution,”RemoteSens.,vol.11, no. 13, 2019, Art. no. 1557.
[38] S.Cogliati et al., “The PRISMA imaging spectroscopy mission: Overview and first performance analysis,” Remote Sens. Environ., vol. 262, 2021, Art. no. 112499.
[39] D. Krutz et al., “The instrument design of the DLR earth sensing imaging spectrometer (DESIS),” Sensors, vol. 19, no. 7, 2019, Art. no. 1622.
[40] G. Kerr et al., “The hyperspectral sensor DESIS on MUSES: Processing and applications,” in Proc. Int. Geosci. Remote Sens. Symp., 2016, pp. 268–271.
[41] I. Aneece and P. S. Thenkabail, “Classifying crop types using two generations of hyperspectral sensors (Hyperion and DESIS) with machine learning on the cloud,” Remote Sens., vol. 13, no. 22, 2021, Art. no. 4704.
[42] I. Aneece and P. Thenkabail, “Accuracies achieved in classifying five leading world crop types and their growth stages using optimal earth observing 1hyperionhyperspectralnarrowbandsonGoogleearthengine,” Remote Sens., vol. 10, no. 12, 2018, Art. no. 2027.
[43] M. Marshall, M. Belgiu, M. Boschetti, M. Pepe, A. Stein, and A. Nelson, “Field-level crop yield estimation with PRISMA and Sentinel-2,” ISPRS J. Photogramm. Remote Sens., vol. 187, pp. 191–210, 2022.
[44] I. Aneece and P. S. Thenkabail, “DESIS and PRISMA: A study of a new generation of space borne hyperspectral sensors in the study of world crops,” in Proc.IEEEInt.Geosci.RemoteSens.Symp.,2021,pp. 479–479, doi: 10.1109/igarss47720.2021.9553718.
[45] R.Müller et al., “the New hyperspectral sensor desis on the multi-payload platform muses installed on the ISS,” Int. Arch. Photogramm. Remote Sens., vol. XLI-B1, pp. 461–467, 2016.
[46] A. Sharifi, “Development of a method for flood detection based on sentinel-1 images and classifier algorithms,” Water Environ. J., vol. 35, no. 3, pp. 924–929, 2021.
[47] S. S. Sawant and M. Prabukumar, “A survey of band selection techniques for hyperspectral image classification,” J. Spectr. Imag., vol. 9, pp. 1–18, 2020.
[48] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001.
[49] V. F. Rodriguez-Galiano, B. Ghimire, J. Rogan, M. Chica-Olmo, and J. P. Rigol-Sanchez, “An assessment of the effectiveness of a random forest classifier for land-cover classification,” ISPRS J. Photogramm. Remote Sens., vol. 67, no. 1, pp. 93–104, 2012.
[50] H. Gao, Y. Yang, C. Li, L. Gao, and B. Zhang, “Multiscale residual network with mixed depth wise convolution for hyperspectral image class if ication,”IEEETrans.Geosci.RemoteSens.,vol.59,no.4,pp. 3396–3408, Apr. 2021, doi: 10.1109/TGRS.2020.3008286.
[51] H.Gao,Y.Zhang,Z.Chen,andC.Li,“A multiscale dual-branch feature fusion and attention network for hyperspectral images classification,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14, pp. 8180–8192, 2021, doi: 10.1109/JSTARS.2021.3103176.
[52] L. Su and Y. Huang, “Support vector machine (SVM) classification: Comparison of linkage techniques using a clustering-based method for training data selection,” GISci. Remote Sens., vol. 46, no. 4, pp. 411–423, 2009.
[53] J. Ren, R. Wang, G. Liu, R. Feng, Y. Wang, and W. Wu, “Partitioned relief-F method for dimensionality reduction of hyperspectral images,” Remote Sens., vol. 12, no. 7, 2020, Art. no. 1104. [54] Z. Chen et al., “Leaf area index estimation algorithm for GF-5 hyper spectral data based on different feature selection and machine learning methods,” Remote Sens., vol. 12, no. 13, 2020, Art. no. 2110. [55] X. Deng et al., “Detection of citrus huanglongbing based on multi-input neural network model of UAV hyperspectral remote sensing,” Remote Sens., vol. 12, no. 17, 2020, Art. no. 2678.
[56] N. R. Rao, P. K. Garg, and S. K. Ghosh, “Development of an agricultural crops spectral library and classification of crops at cultivar level using hyperspectral data,” Precis. Agriculture, vol. 8, no. 4–5, pp. 173–185, 2007