Ссылки
Alcantara, C., Kuemmerle, T., Prishchepov, A.V., Radeloff, V.C., 2012. Mapping abandoned agriculture with multi-temporal MODIS satellite data.
Remote Sens. Environ. 124, 334–347. https://doi.org/10.1016/j.rse.2012.05.019
Alcantara, C., Kuemmerle, T., Baumann, M., Bragina, E.V., Griffiths, P., Hostert, P., Knorn, J., Müller, D., Prishchepov, A.V., Schierhorn, F., Sieber, A., Radeloff, V.C., 2013. Mapping the extent of abandoned farmland in central and Eastern Europe using MODIS time series satellite data.
Environ. Res. Lett. 8. https://doi.org/10.1088/1748-9326/8/3/035035
Arevalo, P., Olofsson, P., Woodcock, C.E., 2020. Continuous monitoring of land change activities and post-disturbance dynamics from Landsat time series: a test methodology for REDD plus reporting.
Remote Sens. Environ. 238. https://doi.org/10.1016/j.rse.2019.01.013
Baumann, M., Kamp, J., Pötzschner, F., Bleyhl, B., Dara, A., Hankerson, B., Prishchepov, A.V., Schierhorn, F., Müller, D., Hölzl, N., Krämer, R., Urazaliyev, R., Kuemmerle, T., 2020. Declining human pressure and opportunities for rewilding in the steppes of Eurasia.
Divers. Distrib. 26, 1058–1070. https://doi.org/10.1111/ddi.13110
Bavorová, M., Ullah, A., Nyendu, D., Prishchepov, A.V., 2023. Determinants of farmland abandonment in the urban-rural fringe of Ghana.
Reg. Environ. Chang. 23, 122. https://doi.org/10.1007/s10113-023-02117-z
Benayas, J.M.R., Martins, A., Nicolau, J.M., Schulz, J.J., 2007. Abandonment of agricultural land: an overview of drivers and consequences.
CAB Rev. 2, 14. https://doi.org/10.1079/PAVSNNR20072057
Bennett, M.M., Van Den Hoek, J., Zhao, B., Prishchepov, A.V., 2022. Improving satellite monitoring of armed conflicts.
Earth's Future 10. https://doi.org/10.1029/2022EF002904
Benoit, K., Watanabe, K., Wang, H., Nulty, P., Obeng, A., Müller, S., Matsuo, A., 2018. Quanteda: an R package for the quantitative analysis of textual data.
JOSS 3, 774. https://doi.org/10.21105/joss.00774
Bertolazzi, G., Tumminello, M., Morello, G., Belmonte, B., Tripodo, C., 2024. Resampling approaches for the quantitative analysis of spatially distributed cells.
Data Intell. 6, 104–119. https://doi.org/10.1162/dint_a_00249
Bicik, I., Jelecek, L., Stepanek, V., 2001. Land-use changes and their social driving forces in Czechia in the 19th and 20th centuries.
Land Use Policy 18, 65–73. https://doi.org/10.1016/S0264-8377(00)00047-8
Bispo, P.D.C., Pardini, M., Papathanassiou, K.P., Kugler, F., Balzter, H., Rains, D., dos Santos, J.R., Rizaev, I.G., Tansey, K., dos Santos, M.N., Spinelli Araujo, L., 2019. Mapping forest successional stages in the Brazilian Amazon using forest heights derived from TanDEM-X SAR interferometry.
Remote Sens. Environ. 232, 111194. https://doi.org/10.1016/j.rse.2019.05.013
Bonnier, R., Plieninger, T., Bhagwat, T., Kamp, J., 2024. Viticulture abandonment benefits the bird community of the French Mediterranean.
Basic Appl. Ecol. 79, 46–56. https://doi.org/10.1016/j.baae.2024.05.006
Bossard, M., Feranec, J., Otahel, J., 2000. CORINE Land Cover Technical Guide—Addendum 2000 (40/2000). CORINE land cover technical guide, European Environmental Agency.
Brandt, M., Rasmussen, K., Peñuelas, J., Tian, F., Schurgers, G., Verger, A., Mertz, O., Palmer, J.R.B., Fensholt, R., 2017. Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa.
Nat. Ecol. Evol. 1, 0081. https://doi.org/10.1038/s41559-017-0081
Brandt, M., Tucker, C.J., Kariryaa, A., Rasmussen, K., Abel, C., Small, J., Chave, J., Rasmussen, L.V., Hiernaux, P., Diouf, A.A., Kergoat, L., Mertz, O., Igel, C., Gieseke, F., Schöning, J., Li, S., Melocik, K., Meyer, J., Sinno, S., Romero, E., Glennie, E., Montagu, A., Dendoncker, M., Fensholt, R., 2020. An unexpectedly large count of trees in the West African Sahara and Sahel.
Nature 587, 78–82. https://doi.org/10.1038/s41586-020-2824-5
Bucha, T., Papco, J., Sackov, I., Pajtik, J., Sedliak, M., Barka, I., Feranec, J., 2021. Woody above-ground biomass estimation on abandoned agriculture land using Sentinel-1 and Sentinel-2 data.
Remote Sens. 13. https://doi.org/10.3390/rs13132488
Castillo, M., Rivard, B., Sanchez-Azofeifa, A., Calvo-Alvarado, J., Dubayah, R., 2012. LIDAR remote sensing for secondary tropical dry forest identification.
Remote Sens. Environ. 121, 132–143. https://doi.org/10.1016/j.rse.2012.01.012
Castillo, C.P., Jacobs-Crisioni, C., Kavalov, B., Lavalle, C., 2019. Socio-economic and demographic trends in EU rural areas: an indicator-based assessment with LUISA territorial modeling platform. In: Grueau, C., Laurini, R., Ragia, L. (Eds.), Proceedings of the 5th International Conference on Geographical Information Systems Theory, Applications and Management (GISTAM 2019), pp. 250–258. https://doi.org/10.5220/0007739902500258
Cazcarra-Bes, V., Tello-Alonso, M., Fischer, R., Heym, M., Papathanassiou, K., 2017. Monitoring of forest structure dynamics by means of L-band SAR tomography.
Remote Sens. 9, 1229. https://doi.org/10.3390/rs9121229
Cots-Folch, R., Aitkenhead, M.J., Martinez-Casasnovas, J.A., 2007. Mapping land cover from detailed aerial photography data using textural and neural network analysis.
Int. J. Remote Sens. 28, 1625–1642. https://doi.org/10.1080/01431160600887722
Crawford, C.L., Yin, H., Radeloff, V.C., Wilcove, D.S., 2022. Rural land abandonment is too ephemeral to provide major benefits for biodiversity and climate.
Sci. Adv. 8, eabm8999. https://doi.org/10.1126/sciadv.abm8999
Dara, A., Baumann, M., Kuemmerle, T., Pflugmacher, D., Rabe, A., Griffiths, P., Hölzel, N., Kamp, J., Freitag, M., Hostert, P., 2018. Mapping the timing of cropland abandonment and recultivation in northern Kazakhstan using annual Landsat time series.
Remote Sens. Environ. 213, 49–60. https://doi.org/10.1016/j.rse.2018.05.005
Dara, A., Baumann, M., Freitag, M., Hölzel, N., Hostert, P., Kamp, J., Müller, D., Prishchepov, A.V., Kuemmerle, T., 2020a. Annual Landsat time series reveal post-soviet changes in grazing pressure.
Remote Sens. Environ. 239, 111667. https://doi.org/10.1016/j.rse.2020.111667
Dara, A., Baumann, M., Hölzel, N., Hostert, P., Kamp, J., Müller, D., Ullrich, B., Kuemmerle, T., 2020b. Post-soviet land-use change affected fire regimes on the Eurasian steppes.
Ecosystems 23, 943–956. https://doi.org/10.1007/s10021-019-00447-w
Daskalova, G.N., Kamp, J., 2023. Abandoning land transforms biodiversity.
Science 380, 581–583. https://doi.org/10.1126/science.adf1099
de Beurs, K.M., Henebry, G.M., 2004. Land surface phenology, climatic variation, and institutional change: analyzing agricultural land cover change in Kazakhstan.
Remote Sens. Environ. 89, 497–509. https://doi.org/10.1016/j.rse.2003.11.006
de Beurs, K.M., Wright, C.K., Henebry, G.M., 2009. Dual scale trend analysis for evaluating climatic and anthropogenic effects on the vegetated land surface in Russia and Kazakhstan.
Environ. Res. Lett. 4, 045012. https://doi.org/10.1088/1748-9326/4/4/045012
de Jong, R., Verbesselt, J., Zeileis, A., Schaepman, M., 2013. Shifts in global vegetation activity trends.
Remote Sens. 5, 1117–1133. https://doi.org/10.3390/rs5031117
Delang, C.O., Yuan, Z., 2015. China's Grain for Green Program: A Review of the Largest Ecological Restoration and Rural Development Program in the World, 1st ed. 2015. Ed. Springer International Publishing: Imprint: Springer, Cham. doi:https://doi.org/10.1007/978-3-319-11505-4
Du, Z., Yang, J., Ou, C., Zhang, T., 2022. Agricultural land abandonment and retirement mapping in the northern China crop-pasture band using temporal consistency check and trajectory-based change detection approach.
IEEE Trans. Geosci. Remote Sens. 60. https://doi.org/10.1109/TGRS.2021.3121816
Estel, S., Kuemmerle, T., Alćantara, C., Levers, C., Prishchepov, A., Hostert, P., 2015. Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series.
Remote Sens. Environ. 163, 312–325. https://doi.org/10.1016/j.rse.2015.03.028
Gelabert, P.J., Rodrigues, M., de la Riva, J., Ameztegui, A., Sebastià, M.T., Vega García, C., 2021. LandTrendr smoothed spectral profiles enhance woody encroachment monitoring.
Remote Sens. Environ. 262, 112521. https://doi.org/10.1016/j.rse.2021.112521
Godinho Cassol, H.L., Cruz De Aragão, L.E., Moraes, E.C., De Brito Carreiras, J.M., Shimabukuro, Y.E., 2021. Quad-pol advanced land observing satellite / phased Array L-band synthetic aperture Radar-2 (ALOS/PALSAR-2) data for modeling secondary forest above-ground biomass in the central Brazilian Amazon.
Int. J. Remote Sens. 42, 4989–5013. https://doi.org/10.1080/01431161.2021.1903615
Goga, T., Feranec, J., Bucha, T., Rušnák, M., Śackov, I., Barka, I., Kopečká, M., Papčo, J., Oťaheľ, J., Szatmári, D., Pazúr, R., Sedliak, M., Pajtík, J., Vladovič, J., 2019. A review of the application of remote sensing data for abandoned agricultural land identification with focus on central and Eastern Europe.
Remote Sens. 11, 2759. https://doi.org/10.3390/rs11232759
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. Google earth engine: planetary-scale geospatial analysis for everyone.
Remote Sens. Environ. 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
Gradinaru, S.R., Iojă, C.I., Vânău, G.O., Onose, D.A., 2020. Multidimensionality of land transformations: from definition to perspectives on land abandonment.
Carpath. J. Earth Environ. Sci. 15, 167–177. https://doi.org/10.26471/cjees/2020/015/119
Heinimann, A., Mertz, O., Frolking, S., Egelund Christensen, A., Hurni, K., Sedano, F., Parsons Chini, L., Sahajpal, R., Hansen, M., Hurtt, G., 2017. A global view of shifting cultivation: recent, current, and future extent.
PLoS ONE 12, e0184479. https://doi.org/10.1371/journal.pone.0184479
Hellesen, T., Matikainen, L., 2013. An object-based approach for mapping shrub and tree cover on grassland habitats by use of LiDAR and CIR orthoimages.
Remote Sens. 5, 558–583. https://doi.org/10.3390/rs5020558
Holl, K.D., Ashton, M.S., Bukoski, J.J., Culbertson, K.A., Curran, S.R., Harris, T.B., Potts, M.D., Valverde, Y.L., Vincent, J.R., 2022. Redefining “abandoned” agricultural land in the context of reforestation.
Front. For. Glob. Change 5, 933887. https://doi.org/10.3389/ffgc.2022.933887
Hong, C., Prishchepov, A.V., Jin, X., Han, B., Lin, J., Liu, J., Ren, J., Zhou, Y., 2023. The role of harmonized Landsat Sentinel-2 (HLS) products to reveal multiple trajectories and determinants of cropland abandonment in subtropical mountainous areas.
J. Environ. Manage. 336, 117621. https://doi.org/10.1016/j.jenvman.2023.117621
Hong, C., Prishchepov, A.V., Jin, X., Zhou, Y., 2024. Mapping cropland abandonment and distinguishing from intentional afforestation with Landsat time series.
Int. J. Appl. Earth Obs. Geoinf. 127, 103693. https://doi.org/10.1016/j.jag.2024.103693
Horion, S., Prishchepov, A.V., Verbesselt, J., de Beurs, K., Tagesson, T., Fensholt, R., 2016. Revealing turning points in ecosystem functioning over the northern Eurasian agricultural frontier.
Glob. Chang. Biol. 22, 2801–2817. https://doi.org/10.1111/gcb.13267
Hou, D., Meng, F., Prishchepov, A.V., 2021. How is urbanization shaping agricultural land-use? Unraveling the nexus between farmland abandonment and urbanization in China.
Landsc. Urban Plan. 214, 104170. https://doi.org/10.1016/j.landurbplan.2021.104170
Huang, X., Ziniti, B., Torbick, N., 2019. Assessing conflict-driven food security in Rakhine, Myanmar with multisource imagery.
Land 8, 95. https://doi.org/10.3390/land8060095
Janus, J., Bozek, P., 2019. Aerial laser scanning reveals the dynamics of cropland abandonment in Poland.
J. Land Use Sci. 14, 378–396. https://doi.org/10.1080/1747423X.2019.1709226
Jabs-Sobocinska, Z., Affek, A.N., Ewiak, I., Nita, M.D., 2021. Mapping mature post-agricultural forests in the Polish eastern Carpathians with archival remote sensing data.
Remote Sens. 13. https://doi.org/10.3390/rs13102018
Jänicke, C., Ansbak Petersen, K., Schmidts, P., Müller, D., Rudbeck Jepsen, M., 2024. Harmonized IACS inventory. https://doi.org/10.5281/ZENODO.14230621
Johnson, K.M., Ouimet, W.B., Dow, S., Haverfield, C., 2021. Estimating historically cleared and forested land in Massachusetts, USA, using airborne LiDAR and archival records.
Remote Sens. 13. https://doi.org/10.3390/rs13214318
Kamp, J., 2014. Land management: weighing up reuse of soviet croplands.
Nature 505, 483. https://doi.org/10.1038/505483d
Kobayashi, Y., Kinoshita, T., 2023. Abandoned farmland detection using single-year satellite images in Japan.
J. Appl. Remote Sens. 17. https://doi.org/10.1117/1.JRS.17.014517
Kolecka, N., 2018. Height of successional vegetation indicates moment of agricultural land abandonment.
Remote Sens. 10, 1568. https://doi.org/10.3390/rs10101568
Kolecka, N., 2021. Greening trends and their relationship with agricultural land abandonment across Poland.
Remote Sens. Environ. 257, 112340. https://doi.org/10.1016/j.rse.2021.112340
Koulouri, M., Giourga, C., 2007. Land abandonment and slope gradient as key factors of soil erosion in Mediterranean terraced lands.
Catena 69, 274–281.
Kumm, K.-I., Hessle, A., 2020. Economic comparison between pasture-based beef production and afforestation of abandoned land in Swedish forest districts.
Land 9, 42. https://doi.org/10.3390/land9020042
Lesiv, M., See, L., Laso Bayas, J.C., Sturn, T., Schepaschenko, D., Karner, M., Moorthy, I., McCallum, I., Fritz, S., 2018. Characterizing the spatial and temporal availability of very high resolution satellite imagery for monitoring applications.
Earth Syst. Sci. Data Discuss. 1–24. https://doi.org/10.5194/essd-2018-13
Li, S., Li, X., 2017. Global understanding of farmland abandonment: a review and prospects.
J. Geogr. Sci. 27, 1123–1150. https://doi.org/10.1007/s11442-017-1426-0
Li, L., Zheng, S., Zhao, K., Shen, K., Yan, X., Zhao, Y., 2022. The quantitative impact of the arable land protection policy on the landscape of farmland abandonment in Guangdong Province.
Remote Sens. 14, 4991. https://doi.org/10.3390/rs14194991
Li, H., Lin, H., Luo, J., Wang, T., Chen, H., Xu, Q., Zhang, X., 2024. Fine-grained abandoned cropland mapping in southern China using pixel attention contrastive learning.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 17, 2283–2295. https://doi.org/10.1109/JSTARS.2023.3338454
Liu, G., Li, Y., Chen, Y., Lu, Y., Jiang, D., Xu, A., Zhong, Y., Yin, H., 2024. Mapping abandoned cropland in tropical/subtropical monsoon areas with multiple crop maturity patterns.
Int. J. Appl. Earth Obs. Geoinf. 127, 103674. https://doi.org/10.1016/j.jag.2024.103674
Liu, T., Yu, L., Liu, X., Peng, D., Chen, X., Du, Z., Tu, Y., Wu, H., Zhao, Q., 2025. A global review of monitoring cropland abandonment using remote sensing: temporal-spatial patterns, causes, ecological effects, and future prospects.
J. Remote Sens. 5, 0584. https://doi.org/10.34133/remotesensing.0584
Low, F., Prishchepov, A., Waldner, F., Dubovyk, O., Akramkhanov, A., Biradar, C., Lamers, J., 2018. Mapping cropland abandonment in the Aral Sea basin with MODIS time series.
Remote Sens. 10, 159. https://doi.org/10.3390/rs10020159
Lyuri, D.I., Goryachkin, S.V., Karavaeva, N.A., Denisenko, E.A., Nefedova, T.G., 2010. Dynamics of Agricultural Lands of Russia in the XXth Century and Postagrogenic Restoration of Vegetation and Soils, (Dinamika Selskohozjaistvennih Zemel Rossii V XX Veke I Postagrogennoje Vosstanovlenije Rastitelnosti I Pochv). GEOS, Moscow.
Maggi, M., Estreguil, C., Soille, P., 2007. Woody vegetation increase in Alpine areas: a proposal for a classification and validation scheme.
Int. J. Remote Sens. 28, 143–166. https://doi.org/10.1080/01431160600851785
Manning, C.D., Raghavan, P., Schütze, H., 2008. Introduction to Information Retrieval. Cambridge University Press, New York.
Morell-Monzo, S., Sebastia-Frasquet, M.-T., Estornell, J., 2021. Land use classification of VHR images for mapping small-sized abandoned citrus plots by using spectral and textural information.
Remote Sens. 13. https://doi.org/10.3390/rs13040681
Munroe, D.K., van Berkel, D.B., Verburg, P.H., Olson, J.L., 2013. Alternative trajectories of land abandonment: causes, consequences and research challenges.
Curr. Opin. Environ. Sustain. 5, 471–476. https://doi.org/10.1016/j.cosust.2013.06.010
Naess, J.S., Cavalett, O., Cherubini, F., 2021. The land-energy-water nexus of global bioenergy potentials from abandoned cropland.
Nat. Sustain. https://doi.org/10.1038/s41893-020-00680-5
Olofsson, P., Foody, G.M., Stehman, S.V., Woodcock, C.E., 2013. Making better use of accuracy data in land change studies: estimating accuracy and area and quantifying uncertainty using stratified estimation.
Remote Sens. Environ. 129, 122–131. https://doi.org/10.1016/j.rse.2012.10.031
Olofsson, P., Foody, G.M., Herold, M., Stehman, S.V., Woodcock, C.E., Wulder, M.A., 2014. Good practices for estimating area and assessing accuracy of land change.
Remote Sens. Environ. 148, 42–57. https://doi.org/10.1016/j.rse.2014.02.015
Olsen, V.M., Fensholt, R., Olofsson, P., Bonifacio, R., Butsic, V., Druce, D., Ray, D., Prishchepov, A.V., 2021. The impact of conflict-driven cropland abandonment on food insecurity in South Sudan revealed using satellite remote sensing.
Nat. Food 2, 990–996. https://doi.org/10.1038/s43016-021-00417-3
Osinska-Skotak, K., Radecka, A., Piorkowski, H., Michalska-Hejduk, D., Kopec, D., Tokarska-Guzik, B., Ostrowski, W., Kania, A., Niedzielko, J., 2019. Mapping succession in non-forest habitats by means of remote sensing: Is the data acquisition time critical for species discrimination?
Remote Sens. 11. https://doi.org/10.3390/rs11222629
Oxford University Press, 2025. Abandon, Etymology.
Ozdogan, M., Woodcock, C.E., 2006. Resolution-dependent errors in remote sensing of cultivated areas.
Remote Sens. Environ. 103, 203–217.
https://doi.org/10.1016/j.rse.2006.04.004McKenzie, J.E., Bossuyt, P.M., Bunton, I., Hoffmann, T.C., Mulrow, C.D., Page, M.J., 2015. Shamseer, L., Tetzlaff, J.M., Ak, E.A.A., Brennan, S.E., Chur, R., Glanville, J., Grimshaw, J.M., Hörbartsson, A., Lal, M.M., Li, T., Löder, E.W., Mayo-Wilson, E., McDonald, S., McGuinness, L.A., Stewart, L.A., Thomas, J., Tricco, A.C., Welch, V.A., 2021. Systematic reviews. Int. J. Surg. 88, 105906. https://doi.org/10.1016/j.ijsu.2020.105906.
Perz, S.G., Skole, D.L., 2003.Social determinants of secondary forests in the Brazilian Amazon. Amazon. Soc. Sci. Res. 32, 25–60.
https://doi.org/10.1016/S0921-8009(02)00012-1.
Pov, P., Hernandez-Serena, A., Tyukavina, A., Hansen, M.C., Commareddy, A.,Pickens, A., Turubanova, S., Tang, H., Silva, C.E., Armstrong, J., Dubayah, R., Bair, J.,Hofton, M., 2021.Global canopy height mapping through integration of GEDI and Landsat data.Remote Sens. Environ. 253, 112265. https://doi.org/10.1016/j.rse.2020.112265.
Prishchepov, A.V., 2020.Agricultural land abandonment.In: Environmental Science. Oxford University Press. https://doi.org/10.1093/obo/9780199933645-0129.
Prishchepov, A., 2025.Systematic Literature Review Database on Remote Sensing of Farmland/Abandonment. https://doi.org/10.5281/ZENODO.51660115.
Prishchepov, A.V., Radeloff, V.C., Baumann, M., Kuemmerle, T., Müller, D., 2012a. Effects of institutional changes on land use: agricultural land abandonment in post-soviet Eastern Europe.Environ. Res. Lett. 7, 024021. https://doi.org/10.1088/1748-9326/7/2/024021.
Prishchepov, A.V., Müller, D., Dubinin, M., Alcantara, C., 2012b The effect of LandSat ETM/ETM+ dates on the detection of agricultural land abandonment in Eastern Europe. Remote Sens. Environ. 126, 195–209. https://doi.org/10.1016/j.rse.2012.08.017.
Prishchepov, A.V., Müller, D., Dubinin, M., Baumann, M., Radeloff, V.C., 2013. Determinants of agricultural land abandonment in post-soviet Russia. Land Use Policy 30, 873–884.
https://doi.org/10.1016/j.landusepol.2012.06.011.
Prishchepov, A.V., Myachina, K.V., Kamp, J., Smelansky, I., Dubrovskaya, S., Rykov, R., Grudinin, D., Yakovlev, I., Urazaliev, R., 2021. Multiple trajectories of fragmentation, degradation, and recoveryin Russia's steppes. Land Degrad. Dev. 32, 3220–3235. https://doi.org/10.1002/ldr.3976.
Prishchepov, A.V., Schierhorn, F., Low, F., 2021b. Unraveling the diversity of trajectories and drivers of global agricultural land abandonment. Land 10, 97. https://doi.org/10.3390/land10020097.
Rao, K., Andregg, W.R.L., Sala, A., Martinuzzi, S., Konings, A.G., 2019. Satellite measurements of optical depth as an indicatorof tree mortality due to drought. Remote Sens. Environ. 227, 125–136. https://doi.org/10.1016/j.rse.2019.03.026.
Ray, D.K., Sloat, L.L., Garcia, A.S., Davis, K.F., Ali, T., Xie, W., 2022. Crop harvests for direct food use insufficient to meet the UN's food security goal. Nat. Food 3, 367–374.
https://doi.org/10.1038/s43016-022-00504-z.
Rendenieks, Z., Nita, M.D., Nikodemus, O., Radeloff, V.C., 2020. Half a century of forest cover change along the Latvian-Russian border captured by object-based image analysis of Corona and Landsat TM/OLI data. Remote Sens. Environ. 249. https:// doi.org/10.1016/j.rse.2020.112010.
Rolinski, S., Prishchepov, A.V., Guggenberger, G., Bischoff, N., Kurganova, I., Schierhorn, F., Müller, D., Müller, C., 2021. Dynamics of soil organic carbon in the steppes of Russia and Kazakhstan under past and future climate and land use. Reg. Environ. Chang. 21, 73. https://doi.org/10.1007/s10113-021-01799-7.
Rufin, P., Meyfroidt, P., Akinyemi, F.O., Estes, L., Ibrahim, E.S., Jain, M., Kerner, H., Lisboa, S.N., Lobell, D., Nakalembe, C., Persello, C., Picoli, M.C.A., Ribeiro, N., Sitoe, A.A., Waha, K., Wang, S., 2025. To enhance sustainable development goal research, open up commercial satellite image archives. Proc. Natl. Acad. Sci. USA 122, e2410246122. https://doi.org/10.1073/pnas.2410246122.
Santrůˇckov´a, M., Dost´alek, J., Frantík, T., 2020. Vegetation succession in extensive abandoned tall-trunk cherry orchards: a case study on Kaˇ nk Mountain near Kutn´ a Hora (Czech Republic). Hacquetia 19, 127–136. https://doi.org/10.2478/hacq- 2019-0017.
Schierhorn, F., Müller, D., Beringer, T., Prishchepov, A.V., Kuemmerle, T., Balmann, A., 2013. Post-soviet cropland abandonment and carbon sequestration in European Russia, Ukraine, and Belarus. Glob. Biogeochem. Cycles 27, 1175–1185. https://doi. org/10.1002/2013GB004654.
Shackleton, C.M., Mograbi, P.J., Drimie, S., Fay, D., Hebinck, P., Hoffman, M.T., Maciejewski, K., Twine, W., 2019. Deactivation of field cultivation in communal areas of South Africa: patterns, drivers and socio-economic and ecological consequences. Land Use Policy 82, 686–699. https://doi.org/10.1016/j. landusepol.2019.01.009.
Shahbandeh, M., Kaim, D., Kozak, J., 2022. The substantial increase of Forest cover in Central Poland following extensive land abandonment: Szydlowiec County case study. Remote Sens 14. https://doi.org/10.3390/rs14163852.
Sica, F., Pulella, A., Nannini, M., Pinheiro, M., Rizzoli, P., 2019. Repeat-pass SAR interferometry for land cover classification: a methodology using Sentinel-1 short- time-series. Remote Sens. Environ. 232, 111277. https://doi.org/10.1016/j. rse.2019.111277. S ¸ ims¸ek, F.F., Durduran, S.S., 2022. Land cover classification using land parcel identification system (LPIS) data and open source Eo-learn library. Geocarto Int. 1–18.
https://doi.org/10.1080/10106049.2022.2146760Sobe, C., Hirschmugl, M., Wimmer, A., 2021. Sentinel-2 time series analysis for identification of underutilized land in Europe. Remote Sens 13, 20. https://doi.org/ 10.3390/rs13234920.
Song, Wen, Prishchepov, A.V., Song, Wei, 2022. Mapping the spatial and temporal patterns of fallow land in mountainous regions of China. Int. J. Digital Earth 15, 2148–2167. https://doi.org/10.1080/17538947.2022.2148765.
Stefanski, J., Kuemmerle, T., Chaskovskyy, O., Griffiths, P., Havryluk, V., Knorn, J., Korol, N., Sieber, A., Waske, B., 2014. Mapping land management regimes in Western Ukraine using optical and SAR data. Remote Sens 6, 5279–5305. https:// doi.org/10.3390/rs6065279.
Steininger, M.K., 1996. Tropical secondary forest regrowth in the Amazon: age, area and change estimation with thematic mapper data. Int. J. Remote Sens. 17, 9–27. https://doi.org/10.1080/01431169608948984.
Storch, T., Honold, H.-P., Chabrillat, S., Habermeyer, M., Tucker, P., Brell, M., Ohndorf, A., Wirth, K., Betz, M., Kuchler, M., Mühle, H., Carmona, E., Baur, S., Mücke, M., L¨ow, S., Schulze, D., Zimmermann, S., Lenzen, C., Wiesner, S., Aida, S., Kahle, R., Willburger, P., Hartung, S., Dietrich, D., Plesia, N., Tegler, M., Schork, K., Alonso, K., Marshall, D., Gerasch, B., Schwind, P., Pato, M., Schneider, M., De Los Reyes, R., Langheinrich, M., Wenzel, J., Bachmann, M., Holzwarth, S., Pinnel, N., Guanter, L., Segl, K., Scheffler, D., Foerster, S., Bohn, N., Bracher, A., Soppa, M.A., Gascon, F., Green, R., Kokaly, R., Moreno, J., Ong, C., Sornig, M., Wernitz, R., Bagschik, K., Reintsema, D., La Porta, L., Schickling, A., Fischer, S., 2023. The EnMAP imaging spectroscopy mission towards operations. Remote Sens. Environ. 294, 113632. https://doi.org/10.1016/j.rse.2023.113632.
Subedi, Y.R., Kristiansen, P., Cacho, O., 2021. Drivers and consequences of agricultural land abandonment and its reutilisation pathways: a systematic review. Environ. Dev. 100681. https://doi.org/10.1016/j.envdev.2021.100681.
Subedi, Y.R., Kristiansen, P., Cacho, O., 2022. Reutilising abandoned cropland in the hill agroecological region of Nepal: options and farmers’ preferences. Land Use Policy 117, 106082. https://doi.org/10.1016/j.landusepol.2022.106082.
Szatm´ari, D., Feranec, J., Goga, T., Rusn´ak, M., Kopeck´a, M., 2021. The role of field survey in the identification of farmland abandonment in Slovakia using Sentinel-2 data. Can. J. Remote. Sens. 47, 569–587. https://doi.org/10.1080/ 07038992.2021.1929118.
Szostak, M., 2020. Automated land cover change detection and Forest succession monitoring using LiDAR point clouds and GIS analyses. Geosciences 10, 321. https://doi.org/10.3390/geosciences10080321.
Szostak, M., 2023. Forest succession mapping for post-agricultural areas using sentinel-2, PlanetScope imageries and LiDAR data. Adv. Geod. Geoinf. https://doi.org/10.24425/agg.2022.141917.
Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., Brisco, B., 2020. Google earth engine for geo-big data applications: a meta-analysis and systematic review. ISPRS J. Photogramm. Remote Sens. 164, 152–170. https://doi.org/10.1016/j.isprsjprs.2020.04.001.
Tamm, T., Zalite, K., Voormansik, K., Talgre, L., 2016. Relating Sentinel-1 interferometric coherence to mowing events on grasslands. Remote Sens 8, 802. https://doi.org/10.3390/rs8100802.
Terekhin, E.A., 2017. Recognition of abandoned agricultural lands using seasonal NDVI values. Comput. Opt. 41, 719–725. https://doi.org/10.18287/2412-6179-2017-41- 5-719-725. Terekhov, A., 2010. NELDA Test Site Report. Kostanay Site (Kazahstan).
Torbick, N., Chowdhury, D., Salas, W., Qi, J., 2017. Monitoring Rice agriculture across Myanmar using time series Sentinel-1 assisted by Landsat-8 and PALSAR-2. Remote Sens 9, 119. https://doi.org/10.3390/rs9020119. UN FAO, 2006. The Role of Agriculture and Rural Development in Revitalizing Abandoned/Depopulated Areas. Food and Agriculture Organization of the United Nations. UN FAO, 2016. FAOSTAT, Methods & Standards [WWW Document].
Wang, C., Gao, Q., Wang, X., Yu, M., 2016. Spatially differentiated trends in urbanization, gricultural land abandonment and reclamation, and woodland recovery in northern China. Sci. Rep. 6, 37658. https://doi.org/10.1038/srep37658.
Wang, L., Pedersen, P.B.M., Svenning, J.-C., 2023. Rewilding abandoned farmland has greater sustainability benefits than afforestation. npj biodivers 2, 5. https://doi.org/ 10.1038/s44185-022-00009-9.
Winkler, K., Fuchs, R., Rounsevell, M., Herold, M., 2021. Global land use changes are four times greater than previously estimated. Nat. Commun. 12, 2501. https://doi. org/10.1038/s41467-021-22702-2.
Witmer, F.D.W., 2008. Detecting war-induced abandoned agricultural land in northeast Bosnia using multispectral, multitemporal Landsat TM imagery. Int. J. Remote Sens. 29, 3805–3831. https://doi.org/10.1080/01431160801891879.
Wu, T., Zhao, X., Wang, S., Zhang, X., Liu, K., Yang, J., 2022. Phenology-based cropland retirement remote sensing model: a case study in Yan’an, loess plateau, China. GISci. Remote Sens. 59, 1103–1120. https://doi.org/10.1080/15481603.2022.2100043.
Wulder, M.A., Masek, J.G., Cohen, W.B., Loveland, T.R., Woodcock, C.E., 2012. Opening the archive: how free data has enabled the science and monitoring promise of Landsat. Remote Sens. Environ. 122, 2–10. https://doi.org/10.1016/j.rse.2012.01.010.
Wuyun, D., Sun, L., Sun, Z., Chen, Z., Hou, A., Teixeira Crusiol, L.G., Reymondin, L., Chen, R., Zhao, H., 2022. Mapping fallow fields using Sentinel-1 and Sentinel-2 archives over farming-pastoral ecotone of northern China with Google earth engine. GISci. Remote Sens. 59, 333–353. https://doi.org/10.1080/ 15481603.2022.2026638.
Yang, J., Huang, X., 2021. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 13, 3907–3925. https://doi.org/10.5194/ essd-13-3907-2021
Ye, J., Hu, Y., Feng, Z., Zhen, L., Shi, Y., Tian, Q., Zhang, Y., 2024. Monitoring of cropland abandonment and land reclamation in the farming–pastoral Zone of Northern China. Remote Sens 16, 1089.
https://doi.org/10.3390/rs16061089.
Yin, H., Prishchepov, A.V., Kuemmerle, T., Bleyhl, B., Buchner, J., Radeloff, V.C., 2018. Mapping agricultural land abandonment from spatial and temporal segmentation of Landsat time series. Remote Sens. Environ. 210, 12–24. https://doi.org/10.1016/j. rse.2018.02.050.
Yin, H., Brand˜ao, A., Buchner, J., Helmers, D., Iuliano, B.G., Kimambo, N.E., Lewi´nska, K. E., Razenkova, E., Rizayeva, A., Rogova, N., Spawn, S.A., Xie, Y., Radeloff, V.C., 2020. Monitoring cropland abandonment with Landsat time series. Remote Sens. Environ. 246, 111873. https://doi.org/10.1016/j.rse.2020.111873.
Yoon, H., Kim, S., 2020. Detecting abandoned farmland using harmonic analysis and machine learning. ISPRS J. Photogramm. Remote Sens. 166, 201–212. https://doi.org/10.1016/j.isprsjprs.2020.05.021.
Yusoff, N.M., Muharam, F.M., Takeuchi, W., Darmawan, S., Abd Razak, M.H., 2017. Phenology and classification of abandoned agricultural land based on ALOS-1 and 2 PALSAR multi-temporal measurements. Int. J. Digital Earth 10, 155–174. https:// doi.org/10.1080/17538947.2016.1216615.
Zagajewski, B., Kluczek, M., Zdunek, K.B., Holland, D., 2024. Sentinel-2 versus PlanetScope images for goldenrod invasive plant species mapping. Remote Sens 16, 636. https://doi.org/10.3390/rs16040636.
Zhao, X., Wu, T., Wang, S., Liu, K., Yang, J., 2023. Detecting spatiotemporal differences in cropland abandonment and reforestation across the three-north region of China
based on Landsat time series. IEEE Trans. Geosci. Remote Sens. 61, 1–12. https://doi.org/10.1109/TGRS.2023.3277491.
Zheng, Q., Ha, T., Prishchepov, A.V., Zeng, Y., Yin, H., Koh, L.P., 2023. The neglected role of abandoned cropland in supporting both food security and climate change mitigation. Nat. Commun. 14, 6083. https://doi.org/10.1038/s41467-023-41837-y.