Ссылки
1. FAO. FAOSTAT. 2017. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on January 2018).
2. Wright, D.; Rasmussen, V.; Ramsey, R.; Baker, D.; Ellsworth, J. Canopy reflectance estimation of wheat nitrogen content for grain protein management. GI Sci. Remote Sens. 2004, 41, 287–300. [CrossRef]
3. Zhao, C.; Liu, L.; Wang, J.; Huang, W.; Song, X.; Li, C. Predicting grain protein content of winter wheat using remote sensing data based on nitrogen status and water stress. Int. J. Appl. Earth Obs. Geoinf. 2005, 7, 1–9. [CrossRef]
4. Stewart, C.M.; McBratney, A.B.; Skerritt, J.H. Site-Specific durum wheat quality and its relationship to soil properties in a single field in Northern New South Wales. Precis. Agric. 2002, 3, 155–168. [CrossRef]
5. Long, D.S.; Engel, R.E.; Carpenter, E.M. On-Combine Sensing and Mapping of Wheat Protein Concentration. Crop Manag. 2005, 4. [CrossRef]
6. Long, D.S.; Engel, R.E.; Siemens, M.C. Measuring grain protein concentration with in-line near infrared reflectance spectroscopy. Agron. J. 2008, 100, 247–252. [CrossRef]
7. Bramley, R.; Mowat, D.; Gobbett, D.; Branson, M.; Wakefield, A.; Wilksch, R. Mixing Grains and Grain-Scoping the Opportunity for Selective Harvesting in Cereals. In Capturing Opportunities and Overcoming Obstacles in Australian Agriculture. Proceedings of 16th Australian Agronomy Conference 2012, Armidale, NSW, Australia, 14–18 October 2012; Australian Society of Agronomy Inc.: Armidale, Australia, 2012; Volume 16.
8. Shewry, P.R. Improving the protein content and composition of cereal grain. J. Cereal Sci. 2007, 46, 239–250. [CrossRef]
9. McMullan, R.M.; McVetty, P.B.E.; Urquhart, A.A. Dry matter and nitrogen accumulation and distribution and their relationship to grain yield and grain protein in wheat. Can. J. Plant Sci. 1988, 68, 311–322. [CrossRef]
10. Mariotti, F.; Tomé, D.; Miraglia, P.P. Converting nitrogen into protein—Beyond 6.25 and Jones’ factors. Crit. Rev. Food Sci. Nutr. 2008, 48, 177–184. [CrossRef] [PubMed]
11. Daniel, C.; Tribioli, E. Effects of temperature and nitrogen nutrition on the grain composition of winter wheat: Effects on gliadin content and composition. J. Cereal Sci. 2000, 32, 45–56. [CrossRef]
12. Ottman, M.J.; Doerge, T.A.; Martin, E.C. Durum grain quality as affected by nitrogen fertilization near anthesis and irrigation during grain fill. Agron. J. 2000, 92, 1035–1041. [CrossRef]
13. Rharrabti, Y.; Villagas, D.; Garcia Del Moral, L.F.; Aparicio, N.; Ehlali, S.; Rojo, C. Environmental and genetic determination of protein content and grain yield in durum wheat under Mediterranean conditions. Plant Bred. 2001, 120, 381–388. [CrossRef]
14. Altenbach, S.B.; DuPont, F.M.; Kothari, K.M.; Chan, R.; Johnson, E.L.; Liu, D. Temperature, water and fertilizer influence the timing of key events during grain development in a US spring wheat. J. Cereal Sci. 2003, 37, 9–10. [CrossRef]
15. Tribioli, E.; Marte, P.; Tribioli E. Blonde, A.M. Environmentally-induced changes in protein composition in developing grains of wheat are related to changes in total protein content. J. Exp. Bot. 2003, 54, 1731–1742. [CrossRef] [PubMed]
16. Jamieson, P.D.; Semenov, M.A. Modelling nitrogen uptake and distribution in wheat. Field Crop. Res. 2000, 68, 21–29. [CrossRef]
17. Marte, P.; Porter, J.R.; Jamieson, P.D.; Tribioli, E. Modelling grain nitrogen accumulation and protein composition to understand the sink/source regulation of nitrogen remobilization for wheat. Plant Physiol. 2003, 133, 1599–1607. [CrossRef] [PubMed]
18. Dupont, F.; Altenbach, S. Molecular and biochemical impacts of environmental factors on wheat grain development and protein synthesis. J. Cereal Sci. 2003, 38, 133–146. [CrossRef]
19. Blankenaeu, K.; Olfs, H.W.; Kuhlmann, H. Strategies to improve the use efficiency of mineral fertilizer nitrogen applied to winter wheat. J. Agron. Crop Sci. 2002, 188, 146–154. [CrossRef]
20. Fischer, R.A.; Howe, G.N.; Ibrahim, Z. Irrigated spring wheat and timing and amount of nitrogen fertilizer. I. Grain yield and protein content. Field Crop. Res. 1993, 33, 37–56. [CrossRef]
21. Bogard, M.; Allard, V.; Brancourt-Hulmell, M.; Heumez, E.; Macquet, J.M.; Jéuffroy, M.H.; Gate, P.; Martre, P.; Le Gouis, J. Deviation from the grain protein concentration-grain yield negative relationship is highly correlated to post-anthesis N uptake in winter wheat. J. Exp. Bot. 2010, 61, 4303–4312. [CrossRef] [PubMed]
22. Hirel, B.; Le Gouis, J.; Ney, B.; Gallais, A. The challenge of improving nitrogen use efficiency in crop plants: Towards a more central role for genetic variability and quantitative genetics within integrated approaches. J. Exp. Bot. 2007, 58, 2369–2387. [CrossRef] [PubMed]
23. Gaju, O.; Allard, V.; Martre, P.; Snape, J.W.; Heumez, E.; Le Gouis, J.; Moreau, D.; Bogard, M.; Griffiths, S.; Orford, S.; et al. Identification of traits to improve the nitrogen-use efficiency of wheat genotypes. Field Crop. Res. 2011, 123, 139–152. [CrossRef]
24. Marti, J.; Bort, J.; Slafer, G.A.; Araus, J.L. Can wheat yield be assessed by early measurement of Normalized Difference Vegetation Index? Ann. Appl. Biol. 2007, 150, 253–257. [CrossRef]
25. Gaju, O.; Allard, V.; Martre, P.; Le Gouis, J.; Moreau, D.; Bogard, M.; Hubbard, S.; Foules, M.J. Nitrogen partitioning and remobilization in relation to leaf senescence, grain yield and grain nitrogen concentration in wheat cultivars. Field Crop. Res. 2014, 155, 213–223. [CrossRef]
26. Reyniers, M.; Vrinds, E. Measuring wheat nitrogen status from space and ground-based platform. Int. J. Remote Sens. 2006, 27, 549–567. [CrossRef]
27. Wang, Z.J.; Wang, J.H.; Liu, L.Y.; Huang, W.J.; Zhao, C.J.; Wang, C.Z. Prediction of grain protein content in winter wheat (Triticum aestivum L.) using plant pigment ratio (PPR). Field Crop. Res. 2004, 90, 311–321. [CrossRef]
28. Barret, F.; Guyon, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ. 1991, 35, 161–173. [CrossRef]
29. Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [CrossRef]
30. Merriman, J. Remote Sensing and Hyperspectral Data to Estimate Wheat and Maize Crop Characteristics in the Yaqui Valley, Mexico. Master’s Thesis, Université Catholique de Louvain, Louvain-la-Neuve, Belgium, 2017.
31. Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; Brown de Colstoun, E.; McCartney, J.E., III. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 2000, 74, 229–239. [CrossRef]
32. Blackburn, G.A. Spectral indices for estimating photosynthetic pigment concentrations: A test using senescent tree leaves. Int. J. Remote Sens. 1998, 19, 657–675. [CrossRef]
33. Reyns, P.; Spaepen, P.; De Baerdemaeker, J. Site-specific relationship between grain quality and yield. Precis. Agric. 2000, 2, 231–246. [CrossRef]
34. Delin, S. Within-field variations in grain protein content—Relationships to yield and soil nitrogen and consistency in maps between years. Precis. Agric. 2004, 5, 565–577. [CrossRef]
35. Diaco, M.; Castiglione, A.; Troccoli, A.; De Benedetto, D.; Basso, B.; Rubino, P. Spatial and temporal variability of wheat grain yield and quality in a Mediterranean environment: A multivariate geostatistical approach. Field Crop. Res. 2012, 131, 49–62. [CrossRef]
36. Shannahan, J.F.; Schepers, J.S.; Francis, D.D.; Varvel, G.E.; Wilhelms, W.W.; Tringe, J.M.; Schlemmer, M.R.; Major, D.J. Use of remote-sensing imagery to estimate corn grain yield. Agron. J. 2001, 93, 583–589. [CrossRef]
37. Leon, C.T.; Shaw, D.R.; Cox, M.S.; Absirsh, M.J.; Ward, B.; Wardlaw, M.C.; Watson, C. Utility of Remote Sensing in Predicting Crop and Soil Characteristics. Precis. Agric. 2003, 4, 359–384. [CrossRef]
38. Inman, D.; Khosla, R.; Reich, R.; Westfall, D.G. Normalized difference vegetation index and soil color-based management zones in irrigated maize. Agron. J. 2008, 100, 60–66. [CrossRef]
39. Blaes, X.; Chomé, G.; Lambert, M.J.; Traoré, P.S.; Schut, A.G.T.; Defoirny, P. Quantifying fertilizer application response variability with VHR satellite NDVI time series in a rainfed smallholder cropping system of Mali. Remote Sens. 2016, 8, 531. [CrossRef]
40. Blaes, X.; Lambert, M.J.; Chomé, G.; Traoré, P.S.; De By, R.A.; Defoirny, P. Yield mapping for different crops in Sudano-Sahelian smallholder farming systems: Results based on metric Worldview and decametric SPOT-5 Take5 time series. In ESA Living Planet: Proceedings of ESA Living Planet Symposium 2016, Prague, Czech Republic, 13–13 May 2016; ESA: Paris, France, 2016; Volume SP-740.
41. Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the Vernal Advancement of Retrogradation of Natural Vegetation; Type III, Final Report; NASA’s Goddard Space Flight Center: Greenbelt, MD, USA, 1974; p. 371.
42. Jotun, S.L.; Whitting, M.L. Temporal and spatial relationships between within-field yield variability in cotton and high-spatial hyperspectral remote sensing imagery. Agron. J. 2005, 97, 641–653. [CrossRef]
43. Eitel, J.U.H.; Long, D.S.; Gessler, P.E.; Hunt, E.R. Combined spectral index to improve ground-based estimates of nitrogen status in dryland wheat. Agron. J. 2008, 100, 1694–1702. [CrossRef]
44. Basnet, B.B.; Arapan, A.A.; Kelly, R.M.; Jensen, T.A.; Strong, W.M.; Butler, D.G. Relating satellite imagery with grain protein content. In Proceedings of the Spatial Sciences 2003 Conference, Canberra, Australia, 22–26 September 2003; pp. 1–11.
45. Feng, M.C.; Xiao, L.J.; Zhang, M.J.; Ding, G.W. Integrating remote sensing and GIS for prediction of winter wheat (Triticum aestivum) protein contents in Linfen (Shanxi), China. PLoS ONE 2014, 9, e80989. [CrossRef] [PubMed]
46. Wang, L.; Tian, Y.; Yao, X.; Zhu, Y.; Cao, W. Predicting grain yield and protein content in wheat by fusing multi-sensor and multi-temporal remote-sensing images. Field Crop. Res. 2014, 164, 178–188. [CrossRef]
47. Hansen, P.M.; Jørgensen, J.R.; Thomsen, A. Predicting grain yield and protein content in winter wheat and spring barley using repeated canopy reflectance measurements and partial least squares regression. J. Agric. Sci. 2002, 139, 307–318. [CrossRef]
48. Jensen, T.; Arapan, A.; Young, F.; Zeller, L. Detecting the attributes of a wheat crop using digital imagery acquired from a low-altitude platform. Comput. Electron. Agric. 2007, 56, 66–77. [CrossRef]
49. Zarco-Tejada, P.J.; Ustin, S.L.; Tao, J.; Suárez, L.; Chen, J.; Gao, F.; Chen, S.; Su, L.; Yuan, L.; Jiang, Z.; et al. Discriminating water stress from nitrogen stress in wheat canopies using hyperspectral indices and their relationships with physiological variables. Remote Sens. Environ. 2013, 134, 106–124. [CrossRef]
50. Meisner, C.A.; Acevedo, E.; Flores, D.; Sayre, K.; Ortiz-Monasterio, J.I.; Byerlee, D. Wheat Production and Grower Practices in the Yaqui Valley, Sonora, Mexico; CIMMYT: Texcoco, Mexico, 1992; Volume 6, ISBN 9868127992.
51. Perry, E.M.; Fitzgerald, G.J.; Nuttall, J.G.; O’Leary, G.J.; Schuller, J.; Whitlock, A. Rapid estimation of canopy nitrogen of cereal crops at paddock scale using a Canopy Chlorophyll Content Index. Field Crop. Res. 2012, 134, 158–164. [CrossRef]
52. Becker-Reshef, I.; Vermote, E.; Linderman, M.; Justice, C. A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sens. Environ. 2010, 114, 1312–1323. [CrossRef]
53. Dempewolf, J.; Adusei, B.; Becker-Reshef, I.; Hansen, M.; Potapov, P.; Khan, A.; Barker, B. Wheat yield forecasting for Punjab Province from vegetation index time series and historic crop statistics. Remote Sens. Environ. 2012, 126, 963–975. [CrossRef]
54. Willis, P.R.; Carter, P.G.; Johannsen, C.J. Assessing yield parameters by remote sensing techniques. In Precision Agriculture; Robert, P.C., Rust, R.H., Larson, W.E., Eds.; American Society of Agronomy, Crop Science Society of America: Madison, WI, USA, 1999; pp. 145–173.
55. Inoue, Y.; Miah, G.; Sakai, E.; Nakao, K.; Kawamura, K. NDSI Map and IPLS Using Hyperspectral Data for Assessment of Plant and Ecosystem Variables—With a Case Study on Remote Sensing of Grain Protein Content, Chlorophyll Content and Biomass in Rice. J. Remote Sens. Soc. Jpn. 2008, 28, 317–330. [CrossRef]
56. Stagakis, S.; Markos, N.; Skiditakis, I.; Kyriasis, A. Monitoring canopy biophysical and biochemical parameters in ecosystem scale using satellite hyperspectral imagery: An application on a Phlomis fruticosa Mediterranean ecosystem using multitemporal CHRIS/PROBA observations. Remote Sens. Environ. 2010, 114, 977–994. [CrossRef]
57. Inoue, Y.; Sakai, E.; Zhu, Y.; Takahashi, W. Diagnostic mapping of canopy nitrogen content in rice based on hyperspectral measurements. Remote Sens. Environ. 2012, 126, 210–221. [CrossRef]
58. Stratoúlas, D.; Balzter, H.; Zimnsky, A.; Douthe, V.R. Assessment of ecophysiology of lake shore reed vegetation based on chlorophyll fluorescence, field spectroscopy and hyperspectral airborne imagery. Remote Sens. Environ. 2015, 157, 72–84. [CrossRef]
59. Inoue, Y.; Guerif, M.; Barret, F.; Skidmore, A.; Gitelson, A.A.; Schlerf, M.; Darvishzadeh, R.; Olioso, A. Simple and robust methods for remote sensing of canopy chlorophyll content: A comparative analysis of hyperspectral data for different types of vegetation. Plant Cell Environ. 2016, 39, 2609–2623. [CrossRef] [PubMed]
60. Meisner, C.A.; Acevedo, E.; Flores, D.; Sayre, K.; Ortiz-Monasterio, J.I.; Byerlee, D. Wheat Production and Grower Practices in the Yaqui Valley, Sonora, Mexico; CIMMYT: Texcoco, Mexico, 1992; Volume 6, ISBN 9868127992.
61. Zadok, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 417–421. [CrossRef]
62. Gueymard, C. SMARTS2: A Simple Model of the Atmospheric Radiative Transfer of Sunshine: Algorithms and Performance Assessment; Florida Solar Energy Center: Cocoa, FL, USA, 1995.
63. Gueymard, C.A. Interdisciplinary applications of a versatile spectral solar irradiance model: A review. Energy 2005, 30, 1551–1576. [CrossRef]
64. Berni, J.A.J.; Zarco-Tejada, P.J.; Suarez, L.; Fereres, E.; Suarez, L.; Fereres, E. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Trans. Geosci. Remote Sens. 2009, 47, 722–738. [CrossRef]
65. Zarco-Tejada, P.J.; Gonzalez-Dugo, V.; Berni, J.A.J. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens. Environ. 2012, 117, 322–337. [CrossRef]
66. Zarco-Tejada, P.J.; Gonzalez-Dugo, M.V.; Fereres, E. Seasonal stability of chlorophyll fluorescence quantification from airborne hyperspectral imagery as an indicator of net photosynthesis in the context of precision agriculture. Remote Sens. Environ. 2016, 179, 89–103. [CrossRef]
67. Calderon, R.; Navas-Cortes, J.A.; Lucena, C.; Zarco-Tejada, P.J. High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sens. Environ. 2013, 139, 231–245. [CrossRef]
68. Calderón, R.; Navas-Cortés, J.A.; Zarco-Tejada, P.J. Early detection and quantification of Verticillium Wilt in olive using hyperspectral and thermal imagery over large area. Remote Sens. 2015, 7, 5584–5610. [CrossRef]
69. Pask, A.; Pietragalla, J.; Mullan, D. Physiological Breeding II: A Field Guide to Wheat Phenotyping; CIMMYT: Texcoco, Mexico, 2012; ISBN 9789706481825.
70. Bramley, R.G.V.; White, R.E. An analysis of variability in the activity of nitrifiers in a soil under pasture. II. Some problems in the geostatistical analysis of biological soil properties. Aust. J. Soil Res. 1991, 29, 109–122. [CrossRef]
71. Bramley, R.G.V. Understanding variability in winegrape production systems 2. Within vineyard variation in quality over several vintages. Aust. J. Grape Wine Res. 2005, 11, 33–42. [CrossRef]
72. Isaaks, E.H.; Srivastava, R.M. Applied Geostatistics; Oxford University Press: New York, NY, USA, 1989.
73. Rodríguez, F.A.; Jr.; Ortiz-Monasterio, I.; Zarco-Tejada, P.J.; Scholthoess, U.; Gérard, B. High resolution remote and proximal sensing to assess low and high yield areas in a wheat field. In Precision Agriculture 2015—Papers Presented at the 10th European Conference on Precision Agriculture, ECPA 2015; Wageningen Academic Publishers: Wageningen, The Netherlands, 2015.
74. Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists; John Wiley & Sons: Hoboken, NJ, USA, 2007; ISBN 0470517264.
75. AACC. Approved Methods of the AACC. In American Association of Cereal Chemists International; AACC: St. Paul, MN, USA, 2010; ISBN 978-1-891127-68-2.
76. Minasny, B.; McBratney, A.B.; Whaley, B.M. VESPER Version 1.62; Australian Centre for Precision Agriculture: St. Louis, MO, USA, 2005.
77. Feil, B. The inverse yield-protein relationship in cereals: Possibilities and limitations for genetically improving the grain protein yield. Trends Agron. 1997, 1, 103–119.
78. Simmonds, N.W. The relation between yield and protein in cereal grain. J. Sci. Food Agric. 1995, 67, 309–315. [CrossRef]
79. Slafer, G.A.; Andrade, F.H.; Feingold, S.E. Genetic improvement of bread wheat (Triticum aestivum L.) in Argentina: Relationships between nitrogen and dry matter. Euphytica 1990, 50, 63–71. [CrossRef]
80. Whelan, B.M.; Taylor, J.A.; Hassell, J.A. Site-specific variation in wheat grain protein concentration and wheat grain yield measured on an Australian farm using harvester-mounted on-the-go sensors. Crop Pasture Sci. 2009, 60, 808–817. [CrossRef]
81. Rodríguez, F.A.; Ortiz-Monasterio, I.; Zarco-Tejada, P.J.; Toledo, F.H.R.B. High resolution hyperspectral imagery to assess wheat grain protein in a farmer’s field. In Precision Agriculture 2016—Papers Presented at the 13th International Conference on Precision Agriculture, ECPA 2016; International Society of Precision Agriculture: Monticello, IL, USA, 2016; pp. 1–13.
82. Huete, A.R.; Liu, H.Q.; Batchily, K.; Van Leeuwen, W. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 444–451. [CrossRef]
83. Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [CrossRef]
84. Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [CrossRef]
85. Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [CrossRef]
86. Team, R.C.: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016.
87. Wickham, H. The split-apply-combine strategy for data analysis. J. Stat. Softw. 2011, 40, 1–29. [CrossRef]
88. Wong, M.T.F.; Assefa, S.; Zhang, S.; H. A flexible approach to managing variability in grain yield and nitrate leaching at within-field of farm scales. Precis. Agric. 2006, 7, 405–417. [CrossRef]
89. Wiegand, C.L.; Richardson, A.J.; Escobar, D.; Gerbermann, A.H. Vegetation indices in crop assessments. Remote Sens. Environ. 1991, 35, 105–119. [CrossRef]
90. Moriondo, M.; Masselli, E.; Bindi, M. A simple model of regional wheat yield based on NDVI data. Eur. J. Agron. 2007, 26, 266–274. [CrossRef]
91. Zheng, T.C.; Zhang, X.K.; Yin, G.H.; Wang, L.N.; Han, Y.L.; Chen, L.; Huang, F.; Tang, J.W.; Xia, X.C.; He, Z.H. Genetic gains in grain yield, net photosynthesis and stomatal conductance achieved in Henan Province of China between 1981 and 2008. Field Crop Res. 2011, 122, 225–233. [CrossRef]
92. Xiao, Y.G.; Qian, Z.G.; Wu, K.; Liu, J.J.; Xia, X.C.; Ji, W.Q.; He, Z.H. Genetic gains in grain yield and physiological traits of winter wheat in Shandong province, China, from 1969 to 2006. Crop Sci. 2012, 52, 44–56. [CrossRef]
93. Aisawi, K.A.B.; Reynolds, M.P.; Singh, R.P.; Foulkes, M.J. The physiological basis of the genetic progress in yield potential of CIMMYT spring wheat cultivars from 1966 to 2009. Crop Sci. 2015, 55, 1749–1764. [CrossRef]
94. Thenkabail, P.S.; Smith, R.B.; De Pauw, E. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens. Environ. 2000, 71, 158–182. [CrossRef]
95. Richardson, A.D.; Duigan, S.P.; Berlyn, G.P. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol. 2002, 153, 185–194. [CrossRef]
96. Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [CrossRef]
97. Sylvester-Bradley, R.; Berry, P.; Blake, J.; Kindred, D.; Spink, J.; Bingham, I.; McVittie, J.; Foulkes, J.; Edwards, C.; Dodgson, G. The Wheat Growth Guide; H.G.A.: London, UK, 2008.
98. Hurcom, S.J.; Harrison, A.R.; Taberner, M. Assessment of biophysical vegetation properties through spectral decomposition techniques. Remote Sens. Environ. 1996, 56, 203–214. [CrossRef]
99. Kaiser, H.F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 1960, 20, 141–151. [CrossRef]
100. Slafer, G. Wheat development: Its role in phenotyping and improving crop adaptation. In Physiological Breeding I: Interdisciplinary Approaches to Improve Crop Adaptation; Reynolds, M.P., Pask, A.J.D., Mullan, D.M., Richards, R.A., Ed.; CIMMYT: Texcoco, Mexico, 2012; ISBN 978064831818.
101. Dubey, R.P.; Ajwani, N.D.; Navalgund, R.R. Relation of wheat yield with parameters derived from a spectral growth profile. J. Indian Soc. Remote Sens. 1991, 19, 27–44. [CrossRef]