Список литературы
/ References Альт В.В., Гурова Т.А., Елкин О.В., Клименко Д.Н., Максимов Л.В., Пестунов И.А., Дубровская О.А., Генаев М.А., Эрст Т.В., Генаев К.А., Комышев Е.Г., Хлесткин В.К., Афонников Д.А. Использование гиперспектральной камеры Specim IQ для анализа растений. Вавиловский журнал генетики и селекции. 2020;24(3):259-266. DOI 10.18699/ VJ19.587. [Alt V.V., Gurova T.A., Elkin O.V., Klimenko D.N., Maximov L.V., Pestunov I.A., Dubrovskaya O.A., Genaev M.A., Erst T.V., Genaev K.A., Komyshev E.G., Khlestkin V.K., Afonnikov D.A. The use of Specim IQ, a hyperspectral camera, for plant analysis. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2020;24(3):259-266. DOI 10.18699/VJ19.587. (in Russian)] Афонников Д.А., Генаев М.А., Дорошков А.В., Комышев Е.Г., Пшеничникова Т.А. Методы высокопроизводительного фенотипирования растений для массовых селекционно-генетических экспериментов. Генетика. 2016;52(7):788-803. DOI 10.7868/ S001667581607002X. [Afonnikov D.A., Genaev M.A., Doroshkov A.V., Komyshev E.G., Pshenichnikova T.A. Methods of high-throughput plant phenotyping for large-scale breeding and genetic experiments. Russ. J. Genet. 2016;52(7):688-701. DOI 10.1134/S1022795416070024.] Демидчик В.В., Шашко А.Ю., Бондаренко В.Ю., Смоликова Г.Н., Пржевальская Д.А., Черныш М.А., Пожванов Г.А., Барковский А.В., Смолич И.И., Соколик А.И., Медведев С.С. Феномика растений: фундаментальные основы, программно-аппаратные платформы и методы машинного обучения. Физиология растений. 2020;67(3):227-245. DOI 10.31857/S0015330320030069. [Demidchik V.V., Shashko A.Yu., Bondarenko V.Yu., Smolikova G.N., Przhevalskaya D.A., Chernysh M.A., Pozhvanov G.A., Barkovskij A.V., Smolich I.I., Sokolik A.I., Medvedev S.S. Plant phenomics: fundamental bases, software and hardware platforms, and machine learning. Russ. J. Plant Physiol. 2020;67(3):397-412. DOI 10.1134/S1021443720030061.] Дубровская О.А., Гурова Т.А., Пестунов И.А., Котов К.Ю. Методы обнаружения болезней на посевах пшеницы по данным дистанционного зондирования (обзор). Сиб. вестн. с.-х. науки. 2018; 48(6):76-89. DOI 10.26898/0370-8799-2018-6-11. [Dubrovskaya O.A., Gurova T.A., Pestunov I.A., Kotov K.Yu. Methods of detection of diseases on wheat crops according to remote sensing (overview). Sibirskii Vestnik Sel’skokhozyaistvennoi Nauki = Siberian Herald of Agricultural Science. 2018;48(6):76-89. DOI 10.26898/0370-8799-2018-6-11. (in Russian)] Aasen H., Burkhart A., Bolten A., Bareth G. Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: from camera calibration to quality assurance. ISPRS J. Photogramm. Remote Sens. 2015;108:245-259. DOI 10.1016/j.isprsjprs.2015.08.002. Abdulridha J., Batuman O., Ampatzidis Y. UAV-based remote sensing technique to detect citrus canker disease utilizing hyperspectral imaging and machine learning. Remote Sens. 2019;11:1373. DOI 10.3390/rs11111373. Alisaac E., Behmann J., Kuska M.T., Dehne H.-W., Mahlein A.-K. Hyperspectral quantification of wheat resistance to Fusarium head blight: comparison of two Fusarium species. Eur. J. Plant Pathol. 2018;152:869-884. DOI 10.1007/s10658-018-1505-9. Barnes R., Dhanoa M., Lister S.J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl. Spectrosc. 1989;43:772-777. DOI 10.1366/0003702894202201. Barreto A., Paulus S., Varrelmann M., Mahlein A.-K. Hyperspectral imaging of symptoms induced by Rhizoctonia solani in sugar beet: comparison of input data and different machine learning algorithms. J. Plant Dis. Prot. 2020;127:441-451. DOI 10.1007/s41348-02000344-8. Behmann J., Acebron K., Emin D., Bennertz S., Matsubara S., Thomas S., Bohnenkamp D., Kuska M.T., Jussila J., Salo H., Mahlein A.-K., Rascher U. Specim IQ: evaluation of a new, miniaturized handheld hyperspectral camera and its application for plant phenotyping and disease detection. Sensors. 2018;18:441. DOI 10.3390/ s18020441. Behmann J., Steinucken J., Plumer L. Detection of early plant stress responses in hyperspectral images. ISPRS J. Photogramm. Remote Sens. 2014;93:98-111. DOI 10.1016/j.isprsjprs.2014.03.016. Bock C.H., Poole G.H., Parker P.E., Gottwald T.R. Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Crit. Rev. Plant Sci. 2010;29:59-107. DOI 10.1080/07352681003617285. Bohnenkamp D., Kuska M.T., Mahlein A.-K., Behmann J. Hyperspectral signal decomposition and symptom detection of wheat rust disease at the leaf scale using pure fungal spore spectra as reference. Plant Pathol. 2019;68:1188-1195. DOI 10.1111/ppa.13020. Burger J. Hyperspectral NIR image analysis. Data Exploration, Correction, and Regression. Doctoral Dissertation. Arkitektkopia, Umea, Sweden, 2006. Burkart A., Aasen H., Alonso L., Menz G., Bareth G., Rascher U. Angular dependency of hyperspectral measurements over wheat characterized by a novel UAV based goniometer. Remote Sens. 2015; 7(1):725-746. DOI 10.3390/rs70100725. Candiago S., Remondino F., De Giglio M., Dubbini M., Gattelli M. Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sens. 2015;7(4): 4026-4047. DOI 10.3390/rs70404026. Choudhary R., Mahesh S., Paliwal J., Jayas D.S. Identification of wheat classes using wavelet features from near infrared hyperspectral images of bulk samples. Biosyst. Eng. 2009;102(2):115-127. DOI 10.1016/j.biosystemseng.2008.09.028. Couture J.J., Singh A., Charkowski A.O., Groves R.L., Gray S.M., Bethke P.C., Townsend P.A. Integrating spectroscopy with potato disease management. Plant Dis. 2018;102:2233-2240. DOI 10.1094/ PDIS-01-18-0054-RE. Delalieux S., van Aardt J., Keulemans W., Schrevens E., Coppin P. Detection of biotic stress (Venturia inaequalis) in apple trees using hyperspectral data: non-parametric statistical approaches and physiological implications. Eur. J. Agron. 2007;27:130-143. DOI 10.1016/j.eja.2007.02.005. ElMasry G.M., Nakauchi S. Image analysis operations applied to hyperspectral images for non-invasive sensing of food quality – a comprehensive review. Biosyst. Eng. 2016;142:53-82. DOI 10.1016/ j.biosystemseng.2015.11.009. Esquerre C., Gowen A.A., Burger J., Downey G., O’Donnell C.P. Suppressing sample morphology effects in near infrared spectral imaging using chemometric data pre-treatments. Chemom. Intell. Lab. Syst. 2012;117:129-137. DOI 10.1016/j.chemolab.2012.02.006. Fahlgren N., Gehan M.A., Baxte I. Lights, camera, action: highthroughput plant phenotyping is ready for a close-up. Curr. Opin. Plant Biol. 2015;24:93-99. DOI 10.1016/j.pbi.2015.02.006. Franceschini M.H.D., Bartholomeus H., van Apeldoorn D.F., Suomalainen J., Kooistra L. Feasibility of unmanned aerial vehicle optical imagery for early detection and severity assessment of late blight in potato. Remote Sens. 2019;11:224. DOI 10.3390/rs11030224. Gitelson A.A., Keydan G.P., Merzlyak M.N. Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophys. Res. Lett. 2006;33(11): L11402. DOI 10.1029/2006GL026457. Gomez-Sanchis J., Molto E., Camps-Valls G., Gomez-Chova L., Aleixos N., Blasco J. Automatic correction of the effects of the light source on spherical objects. An application to the analysis of hyperspectral images of citrus fruits. J. Food Eng. 2008;85(2):191-200. DOI 10.1016/j.jfoodeng.2007.06.036. Guo W., Rage U.K., Ninomiya S. Illumination invariant segmentation of vegetation for time series wheat images based on decision tree model. Comput. Electron. Agric. 2013;96:58-66. DOI 10.1016/ j.compag.2013.04.010. Hatfield J.L., Pinter P.J. Remote-sensing for crop protection. Crop. Prot. 1993;12:403-413. DOI 10.1016/0261-2194(93)90001-Y. Huang J., Liao H., Zhu Y., Sun J., Sun Q., Liu X. Hyperspectral detection of rice damaged by rice leaf folder (Cnaphalocrocis medinalis). Comput. Electron. Agric. 2012;82:100-107. DOI 10.1016/ j.compag.2012.01.002. Huang W., Lamb D.W., Niu Z., Zhang Y., Liu L., Wang J. Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precis. Agric. 2007;8: 187-197. DOI 10.1007/s11119-007-9038-9. Huang Y.B., Thomson S.J., Hoffmann W.C., Lan Y.B., Fritz B.K. Development and prospect of unmanned aerial vehicle technologies for agricultural production management. Int. J. Agric. Biol. Eng. 2013; 6(3):1-10. DOI 10.3965/j.ijabe.20130603.001. Huete A., Didan K., Miura T., Rodriguez E.P., Gao X., Ferreira L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002;83(1):195213. DOI 10.1016/S0034-4257(02)00096-2. Kuska M.T., Wahabzada M., Leucker M., Dehne H.-W., Kersting K., Oerke E.-C., Steiner U., Mahlein A.-K. Hyperspectral phenotyping on the microscopic scale: towards automated characterization of plant-pathogen interactions. Plant Methods. 2015;11:28-41. DOI 10.1186/s13007-015-0073-7. Leucker M., Mahlein A.-K., Steiner U., Oerke E.-C. Improvement of lesion phenotyping in Cercospora beticola – sugar beet interaction by hyperspectral imaging. Phytopatology. 2016;106:177-184. DOI 10.1094/PHYTO-04-15-0100-R. Li J., Zhang R., Li J., Wang Z., Zhang H., Zhan B., Jiang Y. Detection of early decayed oranges based on multispectral principal component image combining both bi-dimensional empirical mode decomposition and watershed segmentation method. Postharvest Biol. Technol. 2019;158:110986-110996. DOI 10.1016/j.postharvbio.2019. 110986. Li L., Zhang Q., Huang D. A review of imaging techniques for plant phenotyping. Sensors. 2014;14:20078-20111. DOI 10.3390/s1411 20078. Li Y., Zhang H., Shen Q. Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote Sens. 2017;9:67. DOI 10.3390/rs9010067. Liu Z.-Y., Wu H.-F., Huang J.-F. Application of neural networks to discriminate fungal infection levels in rice panicles using hyperspectral reflectance and principal components analysis. Comput. Electron. Agric. 2010;72:99-106. DOI 10.1016/j.compag.2010.03.003. Lobos G.A., Camargo A.V., del Pozo A., Araus J.L., Ortiz R., Doonan J.H. Editorial: plant phenotyping and phenomics for plant breeding. Front. Plant Sci. 2017;8:2181. DOI 10.3389/fpls.2017.02181. Lowe A., Harrison N., French A.P. Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. Plant Methods. 2017;13:80-91. DOI 10.1186/ s13007-017-0233-z. Mahlein A.-K. Plant disease detection by imaging sensors-parallels and specific demands for precision agriculture and plant phenotyping. Plant Dis. 2016;100:241-251. DOI 10.1094/PDIS-03-15-0340-FE. Mahlein A.-K., Alisaac E., Masri A.A., Behmann J., Dehne H.-W., Oerke E.-C. Comparison and combination of thermal, fluorescence, and hyperspectral imaging for monitoring Fusarium head blight of wheat on spikelet scale. Sensors. 2019a;19:2281. DOI 10.3390/ s19102281. Mahlein A.-K., Kuska M.T., Thomas S., Wahabzada M., Behmann J., Rascher U., Kersting K. Quantitative and qualitative phenotyping of disease resistance of crops by hyperspectral sensors: seamless interlocking of phytopathology, sensors, and machine learning is needed! Curr. Opin. Plant Biol. 2019b;50:156-162. DOI 10.1016/ j.pbi.2019.06.007. Mahlein A.-K., Kuska M.T., Behmann J., Polder G., Walter A. Hyperspectral sensors and imaging technologies in phytopathology: state of the art. Annu. Rev. Phytopathol. 2018;56:535-558. DOI 10.1146/ annurev-phyto-080417-050100. Mahlein A.-K., Rumpf T., Welke P., Dehne H.-W., Plümer L., Steiner U., Oerke E.-C. Development of spectral indices for detecting and identifying plant diseases. Remote Sens. Environ. 2013;128: 21-30. DOI 10.1016/j.rse.2012.09.019. Mahlein A.-K., Steiner U., Hillnhütter C., Dehne H.-W., Oerke E.-C. Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases. Plant Methods. 2012;8:3. DOI 10.1186/1746-4811-8-3. Mishra P., Asaari M., Herrero-Langreo A., Lohumi S., Diezma B., Scheunders P. Close range hyperspectral imaging of plants: a review. Biosyst. Eng. 2017;164:49-67. DOI 10.1016/j.biosystemseng. 2017.09.009. Moshou D., Bravo C., Oberti R., West J.S., Ramon H., Vougioukas S., Bochtis D. Intelligent multi-sensor system for the detection and treatment of fungal diseases in arable crops. Biosyst. Eng. 2011;108: 311-321. DOI 10.1016/j.biosystemseng.2011.01.003. Moshou D., Bravo C., West J., Wahlen S., McCartney A., Ramon H. Automatic detection of ‘yellow rust’ in wheat using reflectance measurements and neural networks. Comput. Electron. Agric. 2004;44: 173-188. DOI 10.1016/j.compag.2004.04.003. Naidu R.A., Perry E.M., Pierce F.J., Mekuria T. The potential of spectral reflectance technique for the detection of Grapevine leafrollassociated virus-3 in two red-berried wine grape cultivars. Comput. Electron. Agr. 2009;66:38-45. DOI 10.1016/j.compag.2008.11.007. Oerke E.-C., Herzog K., Toepfer R. Hyperspectral phenotyping of the reaction of grapevine genotypes to Plasmopara viticola. J. Exp. Bot. 2016;67(18):5529-5543. DOI 10.1093/jxb/erw318. Pandey P., Ge Y., Stoerger V., Schnable J.C. High throughput in vivo analysis of plant leaf chemical properties using hyperspectral imaging. Front. Plant Sci. 2017;8:1348-1359. DOI 10.3389/fpls.2017. 01348. Polder G., van der Heijden G.W.A.M., van der Voet H., Young I.T. Measuring surface distribution of carotenes and chlorophyll in ripening tomatoes using imaging spectrometry. Postharvest Biol. Techn. 2004;34(2):117-129. Rajendran D.K., Park E., Nagendran R., Hung N.B., Cho B.-K., Kim K.-H. Visual analysis for detection and quantification of Pseudomonas cichorii disease severity in tomato plants. Plant Pathol. J. 2016;32:300-310. DOI 10.5423/PPJ.OA.01.2016.0032. Rinnan A., Berg F., Engelsen S. Review of the most common preprocessing techniques for near-infrared spectra. Trends Anal. Chem. 2009;28(10):1201-1222. DOI 10.1016/j.trac.2009.07.007. Rumpf T., Mahlein A.-K., Steiner U., Oerke E.-C., Dehne H.-W., Plumer L. Early detection and classification of plant diseases with Support Vector Machines based on hyperspectral reflectance. Comput. Electron. Agric. 2010;74:91-99. DOI 10.1016/j.compag.2010. 06.009. Sankaran S., Khot L.R., Espinoza C.Z., Jarolmasjed S., Sathuvalli V.R., Vandemark G.J., Miklas P.N., Carter A.H., Pumphrey M.O., Knowles N.R., Pavek K.J. Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: a review. Eur. J. Agron. 2015;70:112-123. DOI 10.1016/j.eja.2015.07.004. Savitzky A., Golay M.J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964;36:1627-1639. DOI 10.1021/ac60214a047. Singh A., Ganapathysubramanian B., Singh A.K., Sarkar S. Machine learning for high-throughput stress phenotyping in plants. Trends Plant Sci. 2016;21(2):110-124. DOI 10.1016/j.tplants.2015.10.015. Singh D., Sao R., Singh K.P. A remote sensing assessment of pest infestation on sorghum. Adv. Space Res. 2007;39:155-163. DOI 10.1016/j.asr.2006.02.025. Steddom K., Heidel G., Jones D., Rush C.M. Remote detection of rhizomania in sugar beets. Phytopathology. 2003;93:720-726. DOI 10.1094/PHYTO.2003.93.6.720. Sun G., Zhang A., Ren J., Ma J., Wang P., Zhang Y., Jia X. Gravitation-based edge detection in hyperspectral images. Remote Sens. 2017;9:592. DOI 10.3390/rs9060592. Tao Y., Wen Z. An adaptive spherical image transform for high-speed fruit defect detection. Trans. ASABE. 1999;42(1):241-246. Tardieu F., Cabrera-Bosquet L., Pridmore T., Bennett M. Plant phenomics, from sensors to knowledge. Curr. Biol. 2017;27:R770-R783. DOI 10.1016/j.cub.2017.05.055. Thomas S., Behmann J., Steier A., Kraska T., Muller O., Rascher U., Mahlein A.-K. Quantitative assessment of disease severity and rating of barley cultivars based on hyperspectral imaging in a noninvasive, automated phenotyping platform. Plant Methods. 2018a; 14:45. DOI 10.1186/s13007-018-0313-8. Thomas S., Kuska M.T., Bohnenkamp D. Benefits of hyperspectral imaging for plant disease detection and plant protection: a technical perspective. J. Plant Dis. Prot. 2018b;125:5-20. DOI 10.1007/ s41348-017-0124-6. Vidal M., Amigo J.M. Pre-processing of hyperspectral images. Essential steps before image analysis. Chemom. Intell. Lab. 2012;117: 138-148. DOI 10.1016/j.chemolab.2012.05.009. Vigneau N., Ecarnot M., Rabatel G., Roumet P. Potential of field hyperspectral imaging as a non destructive method to assess leaf nitrogen content in wheat. Field Crops Res. 2011;122:25-31. DOI 10.1016/ j.fcr.2011.02.003. Walter A., Liebisch F., Hund A. Plant phenotyping: from bean weighing to image analysis (review). Plant Methods. 2015;11:14. DOI 10.1186/s13007-015-0056-8. Wang W., Li C., Tollner E.W., Gitaitis R.D., Rains G.C. Shortwave infrared hyperspectral imaging for detecting sour skin (Burkholderia cepacia)-infected onions. J. Food Eng. 2012;109(1):38-48. DOI 10.1016/j.jfoodeng.2011.10.001. Williams D., Britten A., McCallum S., Jones H., Aitkenhead M., Karley A., Loades K., Prashar A., Graham J. A method for automatic segmentation and splitting of hyperspectral images of raspberry plants collected in field conditions. Plant Methods. 2017;13:74-85. DOI 10.1186/s13007-017-0226-y. Wu D., Sun D.-W. Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: A review – Part I: Fundamentals. Innov. Food Sci. Emerg. Technol. 2013;19:1-14. DOI 10.1016/j.ifset.2013.04.014. Yang C., Cheng C., Chen R. Changes in spectral characteristics of rice canopy infested with brown planthopper and leaffolder. Crop Sci. 2007;47:329-335. DOI 10.2135/cropsci2006.05.0335. Yeh Y.F., Chung W., Liao J., Chung C., Kuo Y., Lin T. A comparison of machine learning methods on hyperspectral plant disease assessments. IFAC Proc. 2013;46:361-365. DOI 10.3182/20130327-3-JP3017.00081. Yeh Y., Chung W., Liao J., Chung C., Kuo Y., Lin T. Strawberry foliar anthracnose assessment by hyperspectral imaging. Comput. Electron. Agric. 2016;122:1-9. DOI 10.1016/j.compag.2016.01.012. Yu K., Kirchgessner N., Grieder C., Walter A., Hund A. An image analysis pipeline for automated classification of imaging light conditions and for quantification of wheat canopy cover time series in field phenotyping. Plant Methods. 2017;13:15. DOI 10.1186/ s13007-017-0168-4. Yuan L., Huang Y., Loraamm R.W., Nie C., Wang J., Zhang J. Spectral analysis of winter wheat leaves for detection and differentiation of diseases and insects. Field Crops Res. 2014a;156:199-207. DOI 10.1016/j.fcr.2013.11.012. Yuan L., Zhang J., Shi Y., Nie C., Wei L., Wang J. Damage mapping of powdery mildew in winter wheat with high-resolution satellite image. Remote Sens. 2014b;6:3611-3623. DOI 10.3390/rs6053611. Zhang J., Huang Y., Pu R., Gonzalez-Moreno P., Yuan L., Wu K., HuangW. Monitoring plant diseases and pests through remote sensing technology: a review. Comput. Electron. Agric. 2019;165:104943104956. DOI 10.1016/j.compag.2019.104943. Zhang J., Pu R., Wang J., Huang W., Yuan L., Luo J. Detecting powdery mildew of winter wheat using leaf level hyperspectral measurements. Comput. Electron. Agric. 2012;85:13-23. DOI 10.1016/ j.compag.2012.03.006. Zhang J., Wang N., Yuan L., Chen F., Wu K. Discrimination of winter wheat disease and insect stresses using continuous wavelet features extracted from foliar spectral measurements. Biosyst. Eng. 2017; 162:20-29. DOI 10.1016/j.biosystemseng.2017.07.003. Zhang N., Yang G., Pan Y., Yang X., Chen L., Zhao C. A review of advanced technologies and development for hyperspectral-based plant disease detection in the past three decades. Remote Sens. 2020;12: 3188. DOI 10.3390/rs12193188. Zhao Y.-R., Li X., Yu K.-Q., Cheng F., He Y. Hyperspectral imaging for determining pigment contents in cucumber leaves in response to angular leaf spot disease. Sci. Rep. 2016;6:27790. DOI 10.1038/ srep27790. Zheng C., Abd-Elrahman A., Whitaker V. Remote sensing and machine learning in crop phenotyping and management, with an emphasis on applications in strawberry farming. Remote Sens. 2021;13:531. DOI 10.3390/rs13030531. Zhou R.-Q., Jin J.-J., Li Q.-M., Su Z.-Z., Yu X.-J., Tang Y., Luo S.-M., He Y., Li X.-L. Early detection of Magnaporthe oryzae-infected barley leaves and lesion visualization based on hyperspectral imaging. Front. Plant Sci. 2019;9:1962. DOI 10.3389/fpls.2018.01962.