ССЫЛКИ
1. Shippert, P., Introduction to hyperspectral image analysis. Online Journal of Space Communication. 3: p. 13, (2003).
2. Bannari, A., et al. Wheat crop chlorophyll content estimation from ground-based reflectance using chlorophyll indices. in 2006 IEEE International Symposium on Geoscience and Remote Sensing. IEEE, (2006).
3. Freitas, S., et al., Hyperspectral imaging for real-time unmanned aerial vehicle maritime target detection. Journal of Intelligent & Robotic Systems, 90(3-4): p. 551-570, (2018).
4. Arce, G.R., et al., Compressive coded aperture spectral imaging: An introduction. IEEE Signal Processing Magazine. 31(1): p. 105-115, (2014).
5. Campbell, J.B. and R.H. Wynne, Introduction to remote sensing, Guilford Press, (2011).
6. Govender, M., K. Chetty, and H. Bulcock, A review of hyperspectral remote sensing and its application in vegetation and water resource studies. Water SA, 33(2), (2007).
7. Knyazikhin, Y., et al., Hyperspectral remote sensing of foliar nitrogen content. Proceedings of the National Academy of Sciences. 110(3): p. E185-E192, (2013).
8. Smith, R.B., Introduction to hyperspectral imaging with TMIPS. Micrimages Tutorial Web site. 14, (2006).
9. Chen, B., et al., Wetland mapping by fusing fine spatial and hyperspectral resolution images. Ecological Modelling, 353: p. 95-106, (2017).
10. Clark, R.N., G.A. Swayze, and A. Gallagher, Mapping the mineralogy and lithology of Canyonlands, Utah with imaging spectrometer data and the multiple spectral feature mapping algorithms. (1992).
11. Clark, R.N. and G.A. Swayze, Mapping minerals, amorphous materials, environmental materials, vegetation, water, ice and snow, and other materials: the USGS Tricorder algorithm. (1995).
12. Akbari, H., et al., Hyperspectral imaging and quantitative analysis for prostate cancer detection, Journal of Biomedical Optics. 17(7): p. 076005, (2012).
13. Carrasco, O., et al., Hyperspectral imaging applied to medical diagnoses and food safety. in Geo-Spatial and Temporal Image and Data Exploitation III. International Society for Optics and Photonics, (2003).
14. Calin, M.A., et al., Hyperspectral imaging in the medical field: present and future. Applied Spectroscopy Reviews. 49(6): p. 435-447, (2014).
15. Lu, G. and B. Fei, Medical hyperspectral imaging: a review. Journal of Biomedical Optics. 19(1): p. 010901, (2014).
16. Kannin, M., et al., High-Resolution UAV-Based Hyperspectral Imagery for LAI and Chlorophyll Estimation from Wheat for Yield Prediction. Remote Sensing. 10(12): p. (2018).
17. Arelliano, P., et al., Detecting the effects of hydrocarbon pollution in the Amazon forest using hyperspectral satellite images. Environmental Pollution. 205: p. 225-239, (2015).
18. Xu, H. and X.-j. Wang, Applications of multispectral/hyperspectral imaging technologies in the military. Infrared and Laser Engineering. 36(1): p. 13, (2007).
19. Briottet, X., et al. Military application of hyperspectral imagery. in Targets and Backgrounds XII: Characterization and Representation. International Society for Optics and Photonics. 2014.
20. Eisermann, M.T., et al. Comparison of infrared imaging hyperspectral sensors for military target detection applications. in Imaging Spectrometry II. International Society for Optics and Photonics. 1996.
21. Van der Meer, F.D., et al. Multi- and hyperspectral geologic remote sensing: a review. International Journal of Applied Earth Observation and Geoinformation. 14(1): p. 112-128, (2012).
22. Cloutis, E.A., Review article hyperspectral geological remote sensing: evaluation of analytical techniques. International Journal of Remote Sensing. 17(12): p. 2215-2242, (1996).
23. Landgrebe, D., Hyperspectral image data analysis. IEEE Signal Processing Magazine. 19(1): p. 17-28, (2002).
24. Sun, D.-W., Hyperspectral imaging for food quality analysis and control. Academic Press, (2010): Elsevier.
25. Xiong, Z., et al. Applications of hyperspectral imaging in chicken meat safety and quality detection and evaluation: a review. Critical reviews in food science and nutrition. 55(9): p. 1287-1301, (2015).
26. Dai, Q., et al. Advances in hyperspectral image processing in food industry applications: A review. Critical reviews in food science and nutrition. 55(10): p. 1368-1382, (2015).
27. Cheng, J.-H., and D.-W. Sun, Hyperspectral imaging as an effective tool for quality analysis and control of fish and other seafood: current research and potential applications. Trends in Food Science & Technology. 37(2): p. 78-91, (2014).
28. Sloeneker, T., et al. Visible and infrared remote imaging of hazardous waste: a review. Remote Sensing. 2(11): p. 2474-2508, (2010).
29. Nidamanuri, R.R. and B. Zbell, Use of field reflectance data for crop mapping using the airborne hyperspectral image. ISPRS Journal of Photogrammetry and Remote Sensing. 66(5): p. 683-691, (2011).
30. Huai, W., et al., Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precision Agriculture. 8(4-5): p. 187-197, (2011).
31. Shahabi, H. and B. Ahmad, Application of MODIS image satellite and GIS technique in the assessment of avalanche fall in roads. Proc. World Acad. Sci., Eng. Technol. 57(10): p. 713-717, (2011).
32. Negi, H., C. Shekhar, and S. Singh, Snow and glacier investigations using hyperspectral data in the Himalaya. Current Science. p. 892-902, (2015).
33. Anand, R., S. Veni, and J. Arvinth, Big data challenges in the airborne hyperspectral image for urban land use classification. In 2017 International Conference on Advances in Computing, Communications, and Informatics (ICACCI), IEEE, (2017).
34. Gupta, A. and A. Oberoi, A Comparative Analysis of Tensor Decomposition Models Using Hyper Spectral Image. arXiv preprint arXiv:1503.06561. (2015).
35. Nasrabadi, N.M., Regularized spectral matched filter for target recognition in hyperspectral imagery. IEEE Signal Processing Letters. 15: p. 317-320, (2008).
36. Chen, Y., N.M. Nasrabadi, and T.D. Tran, Hyperspectral image classification via kernel sparse representation. IEEE Transactions on Geoscience and Remote sensing. 51(1): p. 217-231, (2013).
37. Manolakis, D., C. Sirasusa, and G. Shaw, Hyperspectral subpixel target detection using the linear mixing model. IEEE Transactions on Geoscience and Remote sensing. 39(7): p. 1322-1409, (2001).