101.Thompson, D.R.; Thorpe, A.K.; Frankenberg, C.; Green, R.O.; Duren, R.; Guanter, L.; Hollstein, A.; Middleton, E.; Ong, L.; Ungar, S. Space-based Remote Imaging Spectroscopy of the Aliso Canyon CH 4 Superemitter.
Geophys. Res. Lett. 2016,
43, 6571–6578. [
Google Scholar] [
CrossRef]
102.Knapp, M.; Scheidweiler, L.; Külheim, F.; Kleinschek, R.; Necki, J.; Jagoda, P.; Butz, A. Spectrometric Imaging of Sub-Hourly Methane Emission Dynamics from Coal Mine Ventilation.
Environ. Res. Lett. 2023,
18, 044030. [
Google Scholar] [
CrossRef]
103.Feng, J.; Rogge, D.; Rivard, B. Comparison of Lithological Mapping Results from Airborne Hyperspectral VNIR-SWIR, LWIR and Combined Data.
Int. J. Appl. Earth Obs. Geoinf. 2018,
64, 340–353. [
Google Scholar] [
CrossRef]
104.Rogge, D.; Rivard, B.; Segl, K.; Grant, B.; Feng, J. Mapping of NiCu-PGE Ore Hosting Ultramafic Rocks Using Airborne and Simulated EnMAP Hyperspectral Imagery, Nunavik, Canada.
Remote Sens. Environ. 2014,
152, 302–317. [
Google Scholar] [
CrossRef]
105.Scafutto, R.D.P.M.; de Souza Filho, C.R.; Rivard, B. Characterization of Mineral Substrates Impregnated with Crude Oils Using Proximal Infrared Hyperspectral Imaging.
Remote Sens. Environ. 2016,
179, 116–130. [
Google Scholar] [
CrossRef]
106.Entezari, I.; Rivard, B.; Geramian, M.; Lipsett, M.G. Predicting the Abundance of Clays and Quartz in Oil Sands Using Hyperspectral Measurements.
Int. J. Appl. Earth Obs. Geoinf. 2017,
59, 1–8. [
Google Scholar] [
CrossRef]
107.Bösche, N.K. Detection of Rare Earth Elements and Rare Earth Oxides with Hyperspectral Spectroscopy. Dr. rer. nat Thesis, University of Potsdam, Potsdam, Germany, 2015. [
Google Scholar]
108.Kokaly, R.F.; Graham, G.E.; Hoefen, T.M.; Kelley, K.D.; Johnson, M.R.; Hubbard, B.E.
Hyperspectral Surveying for Mineral Resources in Alaska; US Geological Survey: Reston, VA, USA, 2016; 2p. [
CrossRef]
109.Kokaly, R.F.; Hoefen, T.M.; Graham, G.E.; Kelley, K.D.; Johnson, M.R.; Hubbard, B.E.; Goldfarb, R.J.; Buchhorn, M.; Prakash, A. Mineral Information at Micron to Kilometer Scales: Laboratory, Field, and Remote Sensing Imaging Spectrometer Data from the Orange Hill Porphyry Copper Deposit, Alaska, USA. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 5418–5421. [
Google Scholar] [
CrossRef]
110.Monteiro, S.T.; Nieto, J.; Murphy, R.; Ramakrishnan, R.; Taylor, Z. Combining Strong Features for Registration of Hyperspectral and Lidar Data from Field-Based Platforms. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Melbourne, Australia, 21–26 July 2013. [
Google Scholar]
111.Murphy, R.J.; Monteiro, S.T. Mapping the Distribution of Ferric Iron Minerals on a Vertical Mine Face Using Derivative Analysis of Hyperspectral Imagery (430–970 nm).
ISPRS J. Photogramm. Remote Sens. 2013,
75, 29–39. [
Google Scholar] [
CrossRef]
112.Austin, K.; Choros, K.; Job, A.; McAree, R.
Real-Time Mining Face Grade Determination Using Hyperspectral Imaging Techniques. MRIWA Project M0518; MRIWA: Brisbane, Australia, 2021.
113.Cardoso-Fernandes, J.; Teodoro, A.C.; Lima, A.; Mielke, C.; Korting, F.; Roda-Robles, E.; Cauzid, J. Multi-Scale Approach Using Remote Sensing Techniques for Lithium Pegmatite Exploration: First Results. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 5226–5229. [
Google Scholar]
114.Kurz, T.H.; Buckley, S.J.; Becker, J.K. Hyperspectral Imaging: A Novel Geological Mapping Technique for Subsurface Construction Sites. In Proceedings of the Proceedings of the World Tunnel Congress 2017—Surface Challenges—Underground Solutions, Bergen, Norway, 9–15 June 2017; p. 10. [
Google Scholar]
115.Kirsch, M.; Mavroudi, M.; Thiele, S.; Lorenz, S.; Tusa, L.; Booysen, R.; Herrmann, E.; Fatihi, A.; Möckel, R.; Dittrich, T.; et al. Underground Hyperspectral Outcrop Scanning for Automated Mine-face Mapping: The Lithium Deposit of Zinnwald/Cínovec.
Photogramm. Rec. 2023,
38, 408–429. [
Google Scholar] [
CrossRef]
116.Thiele, S.T.; Bnoulkacem, Z.; Lorenz, S.; Bordenave, A.; Menegoni, N.; Madriz, Y.; Dujoncquoy, E.; Gloaguen, R.; Kenter, J. Mineralogical Mapping with Accurately Corrected Shortwave Infrared Hyperspectral Data Acquired Obliquely from UAVs.
Remote Sens. 2022,
14, 5. [
Google Scholar] [
CrossRef]
117.Meyer, J.M.; Kokaly, R.F.; Holley, E. Hyperspectral Remote Sensing of White Mica: A Review of Imaging and Point-Based Spectrometer Studies for Mineral Resources, with Spectrometer Design Considerations.
Remote Sens. Environ. 2022,
275, 113000. [
Google Scholar] [
CrossRef]
118.Barton, I.F.; Gabriel, M.J.; Lyons-Baral, J.; Barton, M.D.; Duplessis, L.; Roberts, C. Extending Geometallurgy to the Mine Scale with Hyperspectral Imaging: A Pilot Study Using Drone- and Ground-Based Scanning.
Min. Metall. Explor. 2021,
38, 799–818. [
Google Scholar] [
CrossRef]
119.Dold, B. Acid Rock Drainage Prediction: A Critical Review.
J. Geochem. Explor. 2017,
172, 120–132. [
Google Scholar] [
CrossRef]
120.Lottermoser, B.
Mine Wastes, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 978-3-642-12418-1. [
Google Scholar]
121.Swayze, G.A.; Smith, K.S.; Clark, R.N.; Sutley, S.J.; Pearson, R.M.; Vance, J.S.; Hageman, P.L.; Briggs, P.H.; Meier, A.L.; Singleton, M.J.; et al. Using Imaging Spectroscopy To Map Acidic Mine Waste.
Environ. Sci. Technol. 2000,
34, 47–54. [
Google Scholar] [
CrossRef]
122.Kemper, T.; Sommer, S. Use of Airborne Hyperspectral Data to Estimate Residual Heavy Metal Contamination and Acidification Potential in the Guadiamar Floodplain Andalusia, Spain after the Aznacollar Mining Accident. In Proceedings of the Remote sensing for environmental monitoring, GIS applications, and geology IV, Maspalomas, Spain, 14–16 September 2004; Ehlers, M., Posa, F., Kaufmann, H.J., Michel, U., De Carolis, G., Eds.; SPIE: Bellingham, WA, USA, 2004; p. 224. [
Google Scholar]
123.Chevrel, S.; Kuosmanen, V.; Grösel, K.; Marsh, S.; Tukiainen, T.; Schäffer, U.; Quental, L.; Vosen, P.; Fischer, C.; Loudjani, P.; et al.
Assessing and Monitoring the Environmental Impact of Mining Activities in Europe Using Advanced Earth Observation Techniques; European Community: Luxembourg, 2003. [
Google Scholar]
124.Flores, H.; Lorenz, S.; Jackisch, R.; Tusa, L.; Contreras, I.; Zimmermann, R.; Gloaguen, R. UAS-Based Hyperspectral Environmental Monitoring of Acid Mine Drainage Affected Waters.
Minerals 2021,
11, 182. [
Google Scholar] [
CrossRef]
125.Gascueña, A.B. Mineral Exploration of Rock Wastes from Sulfide Mining Using Airborne Hyperspectral Imaging. Master’s Thesis, Universidad de Granada, Granada, Spain, 2020. [
Google Scholar]
126.Zabcic, N.; Rivard, B.; Ong, C.; Mueller, A. Using Airborne Hyperspectral Data to Characterize the Surface PH and Mineralogy of Pyrite Mine Tailings.
Int. J. Appl. Earth Obs. Geoinf. 2014,
32, 152–162. [
Google Scholar] [
CrossRef]
127.Quental, L.; Sousa, A.J.; Marsh, S.; Brito, G.; Abreu, M.M. Imaging Spectroscopy Answers to Acid Mine Drainage Detection at S. Domingos, Iberian Pyrite Belt, Portugal.
Comun. Geol. 2011,
98, 61–71. [
Google Scholar]
128.Riaza, A.; Müller, A. Hyperspectral Remote Sensing Monitoring of Pyrite Mine Wastes: A Record of Climate Variability (Pyrite Belt, Spain).
Environ. Earth Sci. 2010,
61, 575–594. [
Google Scholar] [
CrossRef]
129.Richter, N.; Staenz, K.; Kaufmann, H. Spectral Unmixing of Airborne Hyperspectral Data for Baseline Mapping of Mine Tailings Areas.
Int. J. Remote Sens. 2008,
29, 3937–3956. [
Google Scholar] [
CrossRef]
130.Rockwell, B.W.; McDougal, R.R.; Gent, C.A.
Remote Sensing for Environmental Site Screening and Watershed Evaluation in Utah Mine Lands—East Tintic Mountains, Oquirrh Mountains, and Tushar Mountains; U.S. Geological Survey Scientific Investigations Report 2004-5241; U.S. Geological Survey: Reston, VA, USA, 2005.
131.Shang, J.; Morris, B.; Howarth, P.; Lévesque, J.; Staenz, K.; Neville, B. Mapping Mine Tailing Surface Mineralogy Using Hyperspectral Remote Sensing.
Can. J. Remote Sens. 2009,
35, S126–S141. [
Google Scholar] [
CrossRef]
132.Ong, C.; Cudahy, T.J.; Swayze, G. Predicting Acid Drainage Related PhysicochemicalMeasurements Using Hyperspectral Data. In Proceedings of the 3rd EARSeL Workshop on Imaging Spectroscopy, Herrsching, Germany, 13–16 May 2003; pp. 363–373. [
Google Scholar]
133.Buzzi, J.; Riaza, A.; García-Meléndez, E.; Carrère, V.; Holzwarth, S. Monitoring of River Contamination Derived From Acid Mine Drainage Using Airborne Imaging Spectroscopy (HyMap Data, South-West Spain).
River Res. Appl. 2016,
32, 125–136. [
Google Scholar] [
CrossRef]
134.Riaza, A.; Buzzi, J.; García-Meléndez, E.; Carrère, V.; Müller, A. Monitoring the Extent of Contamination from Acid Mine Drainage in the Iberian Pyrite Belt (SW Spain) Using Hyperspectral Imagery.
Remote Sens. 2011,
3, 2166–2186. [
Google Scholar] [
CrossRef]
135.Farrand, W.H.; Bhattacharya, S. Tracking Acid Generating Minerals and Trace Metal Spread from Mines Using Hyperspectral Data: Case Studies from Northwest India.
Int. J. Remote Sens. 2021,
42, 2920–2939. [
Google Scholar] [
CrossRef]
136.Ferrier, G.; Rumsby, B.; Pope, R. Application of Hyperspectral Remote Sensing Data in the Monitoring of the Environmental Impact of Hazardous Waste Derived from Abandoned Mine Sites.
Geol. Soc. Lond. Spec. Publ. 2007,
283, 107–116. [
Google Scholar] [
CrossRef]
137.Ong, C.C.H.; Cudahy, T.J. Mapping Contaminated Soils: Using Remotely-sensed Hyperspectral Data to Predict PH.
Eur. J. Soil Sci. 2014,
65, 897–906. [
Google Scholar] [
CrossRef]
138.Jackisch, R.; Lorenz, S.; Zimmermann, R.; Möckel, R.; Gloaguen, R. Drone-Borne Hyperspectral Monitoring of Acid Mine Drainage: An Example from the Sokolov Lignite District.
Remote Sens. 2018,
10, 385. [
Google Scholar] [
CrossRef]
139.Notesco, G.; Kopačková, V.; Rojík, P.; Schwartz, G.; Livne, I.; Dor, E. Ben Mineral Classification of Land Surface Using Multispectral LWIR and Hyperspectral SWIR Remote-Sensing Data. A Case Study over the Sokolov Lignite Open-Pit Mines, the Czech Republic.
Remote Sens. 2014,
6, 7005–7025. [
Google Scholar] [
CrossRef]
140.Kopačková, V. Using Multiple Spectral Feature Analysis for Quantitative PH Mapping in a Mining Environment.
Int. J. Appl. Earth Obs. Geoinf. 2014,
28, 28–42. [
Google Scholar] [
CrossRef]
141.Kopackova, V.; Chevrel, S.; Bourguignon, A.; Rojik, P. Mapping Hazardous Low-PH Material in Mining Environment: Multispectral and Hyperspectral Aproaches. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 2695–2698. [
Google Scholar] [
CrossRef]
142.Mielke, C.; Boesche, N.; Rogass, C.; Kaufmann, H.; Gauert, C.; de Wit, M. Spaceborne Mine Waste Mineralogy Monitoring in South Africa, Applications for Modern Push-Broom Missions: Hyperion/OLI and EnMAP/Sentinel-2.
Remote Sens. 2014,
6, 6790–6816. [
Google Scholar] [
CrossRef]
143.Chalkley, R.; Crane, R.A.; Eyre, M.; Hicks, K.; Jackson, K.-M.; Hudson-Edwards, K.A. A Multi-Scale Feasibility Study into Acid Mine Drainage (AMD) Monitoring Using Same-Day Observations.
Remote Sens. 2022,
15, 76. [
Google Scholar] [
CrossRef]
144.Davies, G.E.; Calvin, W.M. Mapping Acidic Mine Waste with Seasonal Airborne Hyperspectral Imagery at Varying Spatial Scales.
Environ. Earth Sci. 2017,
76, 432. [
Google Scholar] [
CrossRef]
145.Koellner, N. ReMon—Remote Monitoring of Tailings Using Satellites and Drones. Available online:
https://www.gfz-potsdam.de/en/section/remote-sensing-and-geoinformatics/projects/remon/ (accessed on 27 April 2020).
146.Hildebrand, J.C.
Acid Mine Drainage and Tailing Monitoring Using Satellite Imagery for VMS-Type Deposits in the Republic of Cyprus; Scientific Technical Report STR; 22/08; Humboldt University: Berlin, Germany, 2022. [
Google Scholar]
147.Koerting, F.M. Hybrid Imaging Spectroscopy Approaches for Open Pit Mining—Applications for Virtual Mine Face Geology. Ph.D. Thesis, University of Potsdam, Potsdam, Germany, 2021. [
Google Scholar]
148.Koerting, F.; Rogass, C.; Koellner, N.; Horning, M.; Altenberger, U.
Mineral Spectra and Chemistry of 37 Copper-Bearing Surface Samples from Apliki Copper-Gold-Pyrite Mine in the Republic of Cyprus; GFZ Data Services: Potsdam, Germany, 2019. [
Google Scholar]
149.Koerting, F.; Koellner, N.; Mielke, C.; Rogass, C.; Kuras, A.; Altenberger, U.; Kaestner, F.; Hildebrand, C.
Hyperspectral Imaging Data of the Northern Mine Face and of Laboratory Samples of the Copper-Gold-Pyrite Mine Apliki, Nicosia District, Republic of Cyprus; GFZ Data Services: Potsdam, Germany, 2021. [
Google Scholar]
150.Gläßer, C.; Groth, D.; Frauendorf, J. Monitoring of Hydrochemical Parameters of Lignite Mining Lakes in Central Germany Using Airborne Hyperspectral Casi-Scanner Data.
Int. J. Coal Geol. 2011,
86, 40–53. [
Google Scholar] [
CrossRef]
151.Swayze, G.A.; Kokaly, R.F.; Higgins, C.T.; Clinkenbeard, J.P.; Clark, R.N.; Lowers, H.A.; Sutley, S.J. Mapping Potentially Asbestos-Bearing Rocks Using Imaging Spectroscopy.
Geology 2009,
37, 763–766. [
Google Scholar] [
CrossRef]
152.Bruno, R.; Kasmaeeyazdi, S.; Tinti, F.; Mandanici, E.; Balomenos, E. Spatial Component Analysis to Improve Mineral Estimation Using Sentinel-2 Band Ratio: Application to a Greek Bauxite Residue.
Minerals 2021,
11, 549. [
Google Scholar] [
CrossRef]
153.Pfitzner, K.S.; Harford, A.J.; Whiteside, T.G.; Bartolo, R.E. Mapping Magnesium Sulfate Salts from Saline Mine Discharge with Airborne Hyperspectral Data.
Sci. Total Environ. 2018,
640–641, 1259–1271. [
Google Scholar] [
CrossRef]
154.Yin, F.; Wu, M.; Liu, L.; Zhu, Y.; Feng, J.; Yin, D.; Yin, C.; Yin, C. Predicting the Abundance of Copper in Soil Using Reflectance Spectroscopy and GF5 Hyperspectral Imagery.
Int. J. Appl. Earth Obs. Geoinf. 2021,
102, 102420. [
Google Scholar] [
CrossRef]
155.Mars, J.C.; Crowley, J.K. Mapping Mine Wastes and Analyzing Areas Affected by Selenium-Rich Water Runoff in Southeast Idaho Using AVIRIS Imagery and Digital Elevation Data.
Remote Sens. Environ. 2003,
84, 422–436. [
Google Scholar] [
CrossRef]
156.Kasmaeeyazdi, S.; Dinelli, E.; Braga, R. Mapping Co–Cr–Cu and Fe Occurrence in a Legacy Mining Waste Using Geochemistry and Satellite Imagery Analyses.
Appl. Sci. 2022,
12, 1928. [
Google Scholar] [
CrossRef]
157.Kasmaeeyazdi, S.; Braga, R.; Tinti, F.; Mandanici, E. Mapping Bauxite Mining Residues Using Remote Sensing Techniques.
Mater. Proc. 2021,
5, 91. [
Google Scholar]
158.Choe, E.; van der Meer, F.; van Ruitenbeek, F.; van der Werff, H.; de Smeth, B.; Kim, K.-W. Mapping of Heavy Metal Pollution in Stream Sediments Using Combined Geochemistry, Field Spectroscopy, and Hyperspectral Remote Sensing: A Case Study of the Rodalquilar Mining Area, SE Spain.
Remote Sens. Environ. 2008,
112, 3222–3233. [
Google Scholar] [
CrossRef]
159.Kayet, N.; Pathak, K.; Chakrabarty, A.; Kumar, S.; Chowdary, V.M.; Singh, C.P.; Sahoo, S.; Basumatary, S. Assessment of Foliar Dust Using Hyperion and Landsat Satellite Imagery for Mine Environmental Monitoring in an Open Cast Iron Ore Mining Areas.
J. Clean. Prod. 2019,
218, 993–1006. [
Google Scholar] [
CrossRef]
160.Ong, C.C.H.; Cudahy, T.J.; Caccetta, M.S.; Piggott, M.S. Deriving Quantitative Dust Measurements Related to Iron Ore Handling from Airborne Hyperspectral Data.
Min. Technol. 2003,
112, 158–163. [
Google Scholar] [
CrossRef]
161.Pascucci, S.; Belviso, C.; Cavalli, R.M.; Palombo, A.; Pignatti, S.; Santini, F. Using Imaging Spectroscopy to Map Red Mud Dust Waste: The Podgorica Aluminum Complex Case Study.
Remote Sens. Environ. 2012,
123, 139–154. [
Google Scholar] [
CrossRef]
162.Maurais, J.; Orban, F.; Dauphinais, E.; Ayotte, P. Monitoring Moisture Content and Evaporation Kinetics from Mine Slurries through Albedo Measurements to Help Predict and Prevent Dust Emissions.
R. Soc. Open Sci. 2021,
8, 210414. [
Google Scholar] [
CrossRef]
163.Ogen, Y.; Denk, M.; Glaesser, C.; Eichstaedt, H. A Novel Method for Predicting the Geochemical Composition of Tailings with Laboratory Field and Hyperspectral Airborne Data Using a Regression and Classification-Based Approach.
Eur. J. Remote Sens. 2022,
55, 453–470. [
Google Scholar] [
CrossRef]
164.Merrill, J.; Voisin, L. Application of the HyLogger-3 to the Characterization of Mineral and Metallurgical Residues. In Proceedings of the APCOM 2015, Fairbanks, AK, USA, 23–27 May 2015. [
Google Scholar]
165.He, J.; DuPlessis, L.; Barton, I. Heap Leach Pad Mapping with Drone-Based Hyperspectral Remote Sensing at the Safford Copper Mine, Arizona.
Hydrometallurgy 2022,
211, 105872. [
Google Scholar] [
CrossRef]
166.He, J.; Barton, I. Hyperspectral Remote Sensing for Detecting Geotechnical Problems at Ray Mine.
Eng. Geol. 2021,
292, 106261. [
Google Scholar] [
CrossRef]
167.Guan, R.; Li, Z.; Li, T.; Li, X.; Yang, J.; Chen, W. Classification of Heterogeneous Mining Areas Based on ResCapsNet and Gaofen-5 Imagery.
Remote Sens. 2022,
14, 3216. [
Google Scholar] [
CrossRef]
168.Zhang, B.; Wu, D.; Zhang, L.; Jiao, Q.; Li, Q. Application of Hyperspectral Remote Sensing for Environment Monitoring in Mining Areas.
Environ. Earth Sci. 2012,
65, 649–658. [
Google Scholar] [
CrossRef]
169.Buczyńska, A.; Blachowski, J.; Bugajska-Jędraszek, N. Analysis of Post-Mining Vegetation Development Using Remote Sensing and Spatial Regression Approach: A Case Study of Former Babina Mine (Western Poland).
Remote Sens. 2023,
15, 719. [
Google Scholar] [
CrossRef]
170.Weiersbye, I.; Margalit, N.; Feingersh, T.; Revivo, G.; Stark, R.; Zur, Y.; Heller, D.; Braun, O.; Cukrowska, E. Use of Airborne Hyper-Spectral Remote Sensing (HSRS) to Focus Remediation and Monitor Vegetation Processes on Gold Mining Landscapes in South Africa. In Proceedings of the First International Seminar on Mine Closure, Perth, Australia, 13–15 September 2006; pp. 601–611. [
Google Scholar]
171.Song, W.; Song, W.; Gu, H.; Li, F. Progress in the Remote Sensing Monitoring of the Ecological Environment in Mining Areas.
Int. J. Environ. Res. Public Health 2020,
17, 1846. [
Google Scholar] [
CrossRef]
172.Götze, C.; Beyer, F.; Gläßer, C. Pioneer Vegetation as an Indicator of the Geochemical Parameters in Abandoned Mine Sites Using Hyperspectral Airborne Data.
Environ. Earth Sci. 2016,
75, 613. [
Google Scholar] [
CrossRef]
173.Pi-Puig, T.; Solé, J.; Gómez Cruz, A. Mineralogical Study and Genetic Model of Efflorescent Salts and Crusts from Two Abandoned Tailings in the Taxco Mining District, Guerrero (Mexico).
Minerals 2020,
10, 871. [
Google Scholar] [
CrossRef]
174.Fernandes, G.W.; Goulart, F.F.; Ranieri, B.D.; Coelho, M.S.; Dales, K.; Boesche, N.; Bustamante, M.; Carvalho, F.A.; Carvalho, D.C.; Dirzo, R.; et al. Deep into the Mud: Ecological and Socio-Economic Impacts of the Dam Breach in Mariana, Brazil.
Nat. Conserv. 2016,
14, 35–45. [
Google Scholar] [
CrossRef]