Список литературы:
1. Afzal, N.; Ahmad, S. Agricultural Input Use Efficiency in Pakistan: Key Issues and Reform Areas. _Management of Natural Resources_, _Sustainable Future Agriculture_. Research Brief. 2009, 1, 1–12.
2. Ali, H.H.; Peerzada, A.M.; Hanif, Z.; Hashim, S.; Chauhan, B.S. Weed Management Using Crop Competition in Pakistan: A Review. _Crop Protection_. 2017, 95, 22–30. doi:10.1016/j.cropro.2016.12.003.
3. Hassan, A.A.G.; Ngah, I.; Applanaidu, S.D. Agricultural Transformation in Malaysia: The Role of Smallholders and Area Development. _Development_. 2018, 15, 2.
4. Dilipkumar, M.; Chuah, T.S.; Goh, S.S.; Sahid, I. Weed Management Issues, Challenges, and Opportunities in Malaysia. _Crop Protection_. 2020, 134, 104347. doi:10.1016/j.cropro.2020.104347.
5. Chauhan, B.; Johnson, D.E. Row Spacing and Weed Control Timing Affect Yield of Aerobic Rice. _Field Crops Research_. 2011, 121, 226–231. doi:10.1016/j.fcr.2010.12.016.
6. Kang, Y.; Khan, S.; Ma, X. Climate Change Impacts on Crop Yield, Crop Water Productivity and Food Security – A Review. _Progress in Natural Science_. 2009, 19, 1665–1674. doi:10.1016/S1002-0071(08)60263-X.
7. Khan, M.A.; Marwat, K.B.; Umm-e-Kalsoom Hussain, Z.; Hashim, S.; Rab, A.; Nawab, K. Weed Control Effects on the Wheat-Pea Intercropping. _Pakistan Journal of Botany_. 2013, 45, 1743–1748.
8. Hussain, S.; Khaliq, A.; Matloob, A.; Fahad, S.; Tanveer, A. Interference and Economic Threshold Level of Little Seed Canary Grass in Wheat under Different Sowing Times. _Environmental Science and Pollution Research_. 2014, 22, 441–449. doi:10.1007/s11356-014-3383-z.
9. El Pebrian, D.; Ismail, M.I. Characteristics of Repair and Maintenance Cost Distribution of Rice Combine Harvester in Malaysian Paddy Fields. _Agricultural Engineering International: CIGR Journal_. 2019, 20, 132–138.
10. Yusof, Z.M.; Misiran, M.; Baharin, N.F.; Yaacob, M.F.; Aziz, N.A.B.A.; Sanan, N.H.B. Projection of Paddy Production in Kedah Malaysia: A Case Study. _Asian Journal of Advanced Agricultural Research_. 2019, 3, 1–6. doi:10.9734/AJAAR/2019/v3i130088.
11. Karim, R.S.; Man, A.B.; Sahid, I.B. Weed Problems and Their Management in Rice Fields of Malaysia: An Overview. _Weed Biology and Management_. 2004, 4, 177–186. doi:10.1111/j.1445-6664.2004.00144.x.
12. Chauhan, B.S. Weed Management in Direct-Seeded Rice Systems. International Rice Research Institute, Los Baños, Philippines. 2012, p. 20.
13. Hossain, K.; Timsina, J.; Johnson, D.E.; Gathala, M.K.; Krupnik, T.J. Multi-Year Weed Community Dynamics and Rice Yields as Influenced by Tillage, Crop Establishment, and Weed Control: Implications for Rice-Maize Rotations in the Eastern Gangetic Plains. _Crop Protection_. 2020, 138, 105334. doi:10.1016/j.cropro.2020.105334.
14. Singh, M.; Nagargade, M.; Tyagi, V. Ecologically Sustainable Integrated Weed Management in Dry and Irrigated Direct-Seeded Rice. _Advances in Plants and Agricultural Research_. 2018, 8, 319–331. doi:10.15406/apar.2018.08.00234.
15. Moody, K.; De Datta, S.K. Integration of Weed Control Practices for Rice in Tropical Asia. In _Workshop on Weed Control in Small Farms_; Jakarta, Indonesia, 15–16 July 1977; pp. 37–47.
16. Shekhawat, K.; Rathore, S.S.; Chauhan, B.S. Weed Management in Dry Direct-Seeded Rice: A Review on Challenges and Opportunities for Sustainable Rice Production. _Agronomy_. 2020, 10, 1264. doi:10.3390/agronomy10091264.
17. Toriyama, K. (Ed.). _Rice is Life Scientific Perspectives for the 21st Century_; International Rice Research Institute: Los Baños, Philippines; Japan International Research Centre for Agricultural Sciences: Tsukuba, Japan, 2005.
18. Dadashzadeh, M.; Abbaspour-Gilandeh, Y.; Mesri-Gundoshmian, T.; Sabzi, S.; Hernández-Hernández, J.L.; Hernández-Hernández, M.; Arribas, J.I. Weed Classification for Site-Specific Weed Management Using an Automated Stereo Computer-Vision Machine-Learning System in Rice Fields. _Plants_. 2020, 9, 559. doi:10.3390/plants9050559.
19. Paap, A.J. Development of an Optical Sensor for Real-Time Weed Detection Using Laser-Based Spectroscopy. Ph.D. dissertation, Edith Cowan University, Perth, Australia. Retrieved from: https://ro.ecu.edu.au/cgi/viewcontent.cgi?referer=https://scholar.google.com/&httpsredir=1&article=2284&context=theses (Accessed on 15 May 2021).
20. Ali, H.H.; Tanveer, A.; Naeem, M.; Jamil, M.; Iqbal, M.; Javaid, M.M.; Kashif, M.S. Efficacy of Pre-Emergence Herbicides in Controlling Rhynchosia Capitata, an Emerging Summer Weed in Pakistan. _Philippine Agricultural Science_. 2015, 98, 301–311.
21. Kandhro, M.N.; Tunio, S.; Rajpar, I.; Chachar, Q. Allelopathic Impact of Sorghum and Sunflower Intercropping on Weed Management and Yield Enhancement in Cotton. _Sarhad Journal of Agriculture_. 2014, 30, 311–318.
22. Partel, V.; Kakarla, S.C.; Ampatzidis, Y. Development and Evaluation of a Low-Cost and Smart Technology for Precision Weed Management Utilizing Artificial Intelligence. _Computers and Electronics in Agriculture_. 2019, 157, 339–350. doi:10.1016/j.compag.2019.01.006.
23. Huang, Y.; Lee, M.A.; Thomson, S.J.; Reddy, K.N. Ground-Based Hyperspectral Remote Sensing for Weed Management in Crop Production. _International Journal of Agricultural and Biological Engineering_. 2016, 9, 98–109. doi:10.3975/cjae.2016.01.010.
24. Yao, H.; Huang, Y. Remote Sensing Applications to Precision Farming. _Remote Sensing of Natural Resources_. 2013, 358–377.
25. Hunter, J.E.; Gannon, T.W.; Richardson, R.J.; Yelverton, F.H.; Leon, R.G. Integration of Remote-Weed Mapping and an Autonomous Spraying Unmanned Aerial Vehicle for Site-Specific Weed Management. _Pest Management Science_. 2019, 76, 1386–1392. doi:10.1002/ps.5464.
26. Weiss, M.; Jacob, F.; Duveiller, G. Remote Sensing for Agricultural Applications: A Meta-Review. _Remote Sensing Environment_. 2020, 236, 111402. doi:10.1016/j.rse.2019.111402.
27. Campbell, J.B.; Wynne, R.H. _Introduction to Remote Sensing_; Guilford Press: New York, NY, USA, 2011.
28. Bioucas-Dias, J.M.; Plaza, A.; Camps-Valls, G.; Scheunders, P.; Nasrabadi, N.M.; Chanussot, J. Hyperspectral Remote Sensing Data Analysis and Future Challenges. _IEEE Geoscience and Remote Sensing Magazine_. 2013, 1, 6–36. doi:10.1109/MGRS.2013.2244672.
29. Camps-Valls, G.; Tuia, D.; Gómez-Chova, L.; Jiménez, S.; Malo, J. Remote Sensing Image Processing. _Synthesis Lectures on Image, Video, and Multimedia Processing_. 2011, 5, 1–192. doi:10.2200/S00345ED1V01Y201104IVM034.
30. Qian, S.-E. _Optical Satellite Signal Processing and Enhancement_; SPIE Press: Bellingham, WA, USA; Cardiff, UK, 2013.
31. Qian, S.E. _Hyperspectral Satellites and System Design_; CRC Press: Boca Raton, FL, USA, 2020.
32. Govender, M.; Chetty, K.; Naiken, V.; Bulcock, H. A Comparison of Satellite Hyperspectral and Multispectral Remote Sensing Imagery for Improved Classification and Mapping of Vegetation. _Water SA_. 2019, 34, 147. doi:10.4314/wsa.v34i1.14.
33. Wendel, A. Hyperspectral Imaging from Ground-Based Mobile Platforms and Applications in Precision Agriculture. Doctoral thesis, School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, Australia, 2018.
34. Chen, Y.; Guerschman, J.; Cheng, Z.; Guo, L. Remote Sensing for Vegetation Monitoring in Carbon Capture Storage Regions: A Review. _Applied Energy_. 2019, 240, 312–326. doi:10.1016/j.apenergy.2019.01.056.
35. Shaw, G.A.; Burke, H.K. Spectral Imaging for Remote Sensing. _Lincoln Laboratory Journal_. 2003, 14, 3–28.
36. Lu, B.; Dao, P.; Liu, J.; He, Y.; Shang, J. Recent Advances of Hyperspectral Imaging Technology and Applications in Agriculture. _Remote Sensing_. 2020, 12, 2659. doi:10.3390/rs12162659.
37. Kate, S.H.; Rocchini, D.; Neteler, M.; Nagendra, H. Benefits of Hyperspectral Remote Sensing for Tracking Plant Invasions. _Diversity and Distributions_. 2011, 17, 381–392. doi:10.1111/j.1472-4642.2011.00758.x.
38. Vorovencii, I. The Hyperspectral Sensors Used in Satellite and Aerial Remote Sensing. _Bulletin of the Transilvania University of Brașov, Series II: Forest Sciences and Wood Industry, Agricultural Food Engineering_. 2009, 2, 51.
39. Lv, W.; Wang, X. Overview of Hyperspectral Image Classification. _Journal of Sensors_. 2020, 2020, 4817234. doi:10.1155/2020/4817234.
40. Rosle, R.; Che’Ya, N.N.; Ang, Y.; Rahmat, F.; Wayayok, A.; Berahim, Z.; Omar, M.H. Weed Detection in Rice Fields Using Remote Sensing Technique: A Review. _Applied Sciences_. 2021, 11, 10701. doi:10.3390/app112310701.
41. Chang, C.I. _Hyperspectral Data Processing: Algorithm Design and Analysis_; Wiley-Interscience: Hoboken, NJ, USA, 2013.
42. Park, B.; Lu, R. (Eds.) _Hyperspectral Imaging Technology in Food and Agriculture_; Springer: New York, NY, USA, 2015.
43. Vidal, M.; Amigo, J.M. Pre-Processing of Hyperspectral Images: Essential Steps Before Image Analysis. _Chemometrics and Intelligent Laboratory Systems_. 2012, 117, 138–148. doi:10.1016/j.chemolab.2012.05.006.
44. Burger, J.; Geladi, P. Hyperspectral NIR Image Regression Part I: Calibration and Correction. _Journal of Chemometrics: A Journal of the Chemometrics Society_. 2005, 19, 355–363. doi:10.1002/cem.932.
45. Ahmad, M.; Shabbir, S.; Raza, R.A.; Mazzara, M.; Distefano, S.; Khan, A.M. Hyperspectral Image Classification: Artifacts of Dimension Reduction on Hybrid CNN. _arXiv_:2101.10532 [Preprint]. 2021.
46. Basantia, N.C.; Nollet, L.M.; Kamruzzaman, M. (Eds.) _Hyperspectral Imaging Analysis and Applications for Food Quality_; CRC Press: Boca Raton, FL, USA, 2018.
47. Tamilarasi, R.; Prabu, S. Application of Machine Learning Techniques for Hyperspectral Image Dimensionality: A Review. _Journal of Critical Reviews_. 2020, 7, 3499–3516.
48. Sawant, S.S.; Prabukumar, M. Semi-Supervised Techniques Based Hyper-Spectral Image Classification: A Survey. In _Proceedings of the 2017 Innovations in Power and Advanced Computing Technologies (i-PACT)_; Vellore, India, 21–22 April 2017; pp. 1–8.
49. Freitas, S.; Almeida, C.; Silva, H.; Almeida, J.; Silva, E. Supervised Classification for Hyperspectral Imaging in UAV Maritime Target Detection. In _Proceedings of the 2018 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC)_; Torres Vedras, Portugal, 25–27 April 2018; pp. 84–90.
50. Romaszewski, M.; Głomb, P.; Cholewa, M. Semi-Supervised Hyperspectral Classification from a Small Number of Training Samples Using Co-Training Approach. _ISPRS Journal of Photogrammetry and Remote Sensing_. 2016, 121, 60–76. doi:10.1016/j.isprsjprs.2016.08.004.
51. Su, W.H. Advanced Machine Learning in Point Spectroscopy, RGB-, and Hyperspectral-Imaging for Automatic Discriminations of Crops and Weeds: A Review. _Smart Cities_. 2020, 3, 767–792. doi:10.3390/smartcities3040043.
52. Sarvini, T.; Sneha, T.; Sukanya Gowthami, S.G.; Sushmitha, S.; Kumaraswamy, R. Performance Comparison of Weed Detection Algorithms. In _Proceedings of the 2019 International Conference on Communication and Signal Processing (ICCSP)_; Melmaruvathur, India, 4–6 April 2019; pp. 0843–0847.
53. Li, Y.; Al-Sarayreh, M.; Irie, K.; Hackell, D.; Bourdot, G.; Reis, M.M.; Ghamkhar, K. Identification of Weeds Based on Hyperspectral Imaging and Machine Learning. _Frontiers in Plant Science_. 2021, 11, 2324. doi:10.3389/fpls.2020.612692.
54. Atzberger, C. Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs. _Remote Sensing_. 2013, 5, 949–981. doi:10.3390/rs5020949.
55. Pandey, P.C.; Balzter, H.; Srivastava, P.K.; Petropoulos, G.P.; Bhattacharya, B. Future Perspectives and Challenges in Hyperspectral Remote Sensing. In _Hyperspectral Remote Sensing_; Elsevier: Amsterdam, The Netherlands, 2020; pp. 429–439.
56. Feng, Y.-Z.; Sun, D.-W. Application of Hyperspectral Imaging in Food Safety Inspection and Control: A Review. _Critical Reviews in Food Science and Nutrition_. 2012, 52, 1039–1058. doi:10.1080/10408398.2010.503353.
57. Singh, V.; Rana, A.; Bishop, M.; Filippi, A.M.; Cope, D.; Rajan, N.; Bagavathiannan, M. Unmanned Aircraft Systems for Precision Weed Detection and Management: Prospects and Challenges. _Advances in Agronomy_. 2020, 159, 93–134. doi:10.1016/bs.agron.2019.10.003.
58. Pott, L.P.; Amado, T.J.; Schwalbert, R.A.; Sebem, E.; Jugulam, M.; Ciampitti, I.A. Pre-Planting Weed Detection Based on Ground Field Spectral Data. _Pest Management Science_. 2020, 76, 1173–1182. doi:10.1002/ps.5694.
59. Nursyazyla, S.; Syarifah, N.I.S.S.A.; Zaid, R.; Nik, N.C.; Muhammad, H.M.R. A Review on Hyperspectral Remote Sensing for Weed Detection Analysis in Agricultural Crop. _Southeast Asian Agricultural Engineering Student Chapter Annual Regional Convention (ARC2021: Sarawak) E-Proceeding_. 2021. Retrieved from: https://btu.upm.edu.my/upload/dokumen/20211105082434E-Proceeding_ARC2021_eISBN.pdf (Accessed on 19 January 2022).
60. Bradter, U.; O’Connell, J.; Kunin, W.E.; Boffey, C.W.; Ellis, R.J.; Benton, T.G. Classifying Grass-Dominated Habitats from Remotely Sensed Data: The Influence of Spectral Resolution, Acquisition Time and the Vegetation Classification System on Accuracy and Thematic Resolution. _Science of the Total Environment_. 2019, 711, 134584. doi:10.1016/j.scitotenv.2019.134584.
61. Che’Ya, N.; Dunwoody, E.; Gupta, M. Assessment of Weed Classification Using Hyperspectral Reflectance and Optimal Multi-Spectral UAV Imagery. _Agronomy_. 2021, 11, 1435. doi:10.3390/agronomy11061435.
62. Zhang, G.; Xu, T.; Tian, Y.; Xu, H.; Song, J.; Lan, Y. Assessment of Rice Leaf Blast Severity Using Hyperspectral Imaging During Late Vegetative Growth. _Australasian Plant Pathology_. 2020, 49, 571–578. doi:10.1007/s13313-020-00716-w.
63. Thenkabail, P.S.; Lyon, J.G.; Huete, A. Hyperspectral Remote Sensing of Vegetation and Agricultural Crops: Knowledge Gain and Knowledge Gap After 40 Years of Research. In _Hyperspectral Remote Sensing of Vegetation_; Thenkabail, P.S., Lyon, J.G., Huete, A., Eds.; CRC Press: Boca Raton, FL, USA, 2010; p. 705.
64. Casa, R.; Pascucci, S.; Pignatti, S.; Palombo, A.; Nanni, U.; Harfouche, A.; Fantozzi, P. UAV-Based Hyperspectral Imaging for Weed Discrimination in Maize. In _Precision Agriculture’19_; Wageningen Academic Publishers: Wageningen, The Netherlands, 2019; pp. 24–35.
65. Martin, M.P.; Barreto, L.; Riano, D.; Fernandez-Quintanilla, C.; Vaughan, P. Assessing the Potential of Hyperspectral Remote Sensing for the Discrimination of Grassweeds in Winter Cereal Crops. _International Journal of Remote Sensing_. 2011, 32, 49–67. doi:10.1080/01431161.2010.488655.
66. Lass, L.W.; Prather, T.; Glenn, N.; Weber, K.; Mundt, J.T.; Pettingill, J. A Review of Remote Sensing of Invasive Weeds and Example of the Early Detection of Spotted Knapweed (_Centaurea maculosa_) and Babysbreath (_Gypsophila paniculata_) with a Hyperspectral Sensor. _Weed Science_. 2005, 53, 242–251. doi:10.1614/WS-04-111R.
67. Scherrer, B.; Sheppard, J.; Jha, P.; Shaw, J.A. Hyperspectral Imaging and Neural Networks to Classify Herbicide-Resistant Weeds. _Journal of Applied Remote Sensing_. 2019, 13, 044516. doi:10.1117/1.JRS.13.044516.
68. Zhang, Y.; Gao, J.; Cen, H.; Lu, Y.; Yu, X.; He, Y.; Pieters, J.G. Automated Spectral Feature Extraction from Hyperspectral Images to Differentiate Weedy Rice and Barnyard Grass from a Rice Crop. _Computers and Electronics in Agriculture_. 2019, 159, 42–49. doi:10.1016/j.compag.2019.03.013.
69. Chaoying, T.A.N.G.; Xianghui, W.E.I.; Biao, W.A.N.G.; Prasad, S. A Cross-Border Detection Algorithm for Agricultural Spraying UAV. _American Society of Agricultural and Biological Engineers_. 2018.
70. Huang, H.; Deng, J.; Lan, Y.; Yang, A.; Zhang, L.; Wen, S.; Zhang, H.; Zhang, Y.; Deng, Y. Detection of Helminthosporium Leaf Blotch Disease Based on UAV Imagery. _Applied Sciences_. 2019, 9, 558. doi:10.3390/app9030558.
71. Felegari, S.; Sharifi, A.; Moravej, K.; Amin, M.; Golchin, A.; Muzirafuti, A.; Tariq, A.; Zhao, N. Integration of Sentinel 1 and Sentinel 2 Satellite Images for Crop Mapping. _Applied Sciences_. 2021, 11, 10104. doi:10.3390/app112210104.
72. Hennessy, A.; Clarke, K.; Lewis, M. Hyperspectral Classification of Plants: A Review of Waveband Selection Generalisability. _Remote Sensing_. 2020, 12, 113. doi:10.3390/rs12010113.
73. Shannon, D.K.; Clay, D.E.; Kitchen, N.R. _Precision Agriculture Basics_; John Wiley & Sons: Hoboken, NJ, USA, 2020; Volume 176.
74. Lan, Y.; Huang, Z.; Deng, X.; Zhu, Z.; Huang, H.; Zheng, Z.; Lian, B.; Zeng, G.; Tong, Z. Comparison of Machine Learning Methods for Citrus Greening Detection on UAV Multispectral Images. _Computers and Electronics in Agriculture_. 2020, 171, 105234. doi:10.1016/j.compag.2020.105234.
75. Nguyen, M.L.; Ciesielski, V.; Song, A. Rice Leaf Detection with Genetic Programming. In _Proceedings of the 2013 IEEE Congress on Evolutionary Computation_; Cancún, México, 20–23 June 2013; pp. 1146–1153.
76. Pérez-Ortiz, M.; Gutiérrez, P.A.; Peña, J.M.; Torres-Sánchez, J.; López-Granados, F.; Hervás-Martínez, C. Machine Learning Paradigms for Weed Mapping via Unmanned Aerial Vehicles. In _Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI)_; Athens, Greece, 6–9 December 2016; pp. 1–8.
77. Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine Learning in Agriculture: A Review. _Sensors_. 2018, 18, 2674. doi:10.3390/s18082674.
78. Zheng, Y.; Zhu, Q.; Huang, M.; Guo, Y.; Qin, J. Maize and Weed Classification Using Color Indices with Support Vector Data Description in Outdoor Fields. _Computers and Electronics in Agriculture_. 2017, 141, 215–222. doi:10.1016/j.compag.2017.08.011.
79. Kamath, R.; Balachandra, M.; Prabhu, S. Paddy Crop and Weed Discrimination: A Multiple Classifier System Approach. _International Journal of Agronomy_. 2020, 2020, 6474536. doi:10.1155/2020/6474536.
80. Mehra, L.; Cowger, C.; Gross, K.; Ojiambo, P.S. Predicting Pre-Planting Risk of Stagonospora Nodorum Blotch in Winter Wheat Using Machine Learning Models. _Frontiers in Plant Science_. 2016, 7, 390. doi:10.3389/fpls.2016.00390.
81. Chen, Y.; Wu, Z.; Zhao, B.; Fan, C.; Shi, S. Weed and Corn Seedling Detection in Field Based on Multi-Feature Fusion and Support Vector Machine. _Sensors_. 2020, 21, 212. doi:10.3390/s21010212.
82. Chou, J.J.; Chen, C.P.; Yeh, J.T. Crop Identification with Wavelet Packet Analysis and Weighted Bayesian Distance. _Computers and Electronics in Agriculture_. 2007, 57, 88–98. doi:10.1016/j.compag.2006.12.003.
83. Bakhshipour, A.; Zareiforoush, H. Development of a Fuzzy Model for Differentiating Peanut Plant from Broadleaf Weeds Using Image Features. _Plant Methods_. 2020, 16, 153. doi:10.1186/s13007-020-00654-x.
84. Bakhshipour, A.; Jafari, A.; Nassiri, S.M.; Zare, D. Weed Segmentation Using Texture Features Extracted from Wavelet Sub-Images. _Biosystems Engineering_. 2017, 157, 1–12. doi:10.1016/j.biosystemseng.2017.01.003.
85. Tang, L.; Tian, L.; Steward, B.L. Classification of Broadleaf and Grass Weeds Using Gabor Wavelets and an Artificial Neural Network. _Transactions of the ASAE_. 2003, 46, 1247. doi:10.13031/2013.14541.
86. Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Chen, T. Recent Advances in Convolutional Neural Networks. _Pattern Recognition_. 2018, 77, 354–377. doi:10.1016/j.patcog.2017.10.013.
87. Yu, J.; Sharpe, S.M.; Schumann, A.W.; Boyd, N.S. Deep Learning for Image-Based Weed Detection in Turfgrass. _European Journal of Agronomy_. 2019, 104, 78–84. doi:10.1016/j.eja.2018.11.005.
88. Alom, M.Z.; Taha, T.M.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.S.; Hasan, M.; Van Essen, B.C.; Awwal, A.A.S.; Asari, V.K. A State-of-the-Art Survey on Deep Learning Theory and Architectures. _Electronics_. 2019, 8, 292. doi:10.3390/electronics8030292.
89. Hasan, A.S.M.M.; Sohel, F.; Diepeveen, D.; Laga, H.; Jones, M.G. A Survey of Deep Learning Techniques for Weed Detection from Images. _Computers and Electronics in Agriculture_. 2021, 184, 106067. doi:10.1016/j.compag.2021.106067.
90. LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. _Nature_. 2015, 521, 436–444. doi:10.1038/nature14539.
91. Hosseini, M.P.; Lu, S.; Kamaraj, K.; Slowikowski, A.; Venkatesh, H.C. Deep Learning Architectures. In _Deep Learning: Concepts and Architectures_; Springer: Cham, Switzerland, 2020; pp. 1–24.
92. Bah, M.D.; Hafiane, A.; Canals, R. Deep Learning with Unsupervised Data Labeling for Weed Detection in Line Crops in UAV Images. _Remote Sensing_. 2018, 10, 1690. doi:10.3390/rs10111690.
93. Lee, S.H.; Chan, C.S.; Mayo, S.J.; Remagnino, P. How Deep Learning Extracts and Learns Leaf Features for Plant Classification. _Pattern Recognition_. 2017, 71, 1–13. doi:10.1016/j.patcog.2017.05.023.